Package 'CVXR'

Title: Disciplined Convex Optimization
Description: An object-oriented modeling language for disciplined convex programming (DCP) as described in Fu, Narasimhan, and Boyd (2020, <doi:10.18637/jss.v094.i14>). It allows the user to formulate convex optimization problems in a natural way following mathematical convention and DCP rules. The system analyzes the problem, verifies its convexity, converts it into a canonical form, and hands it off to an appropriate solver to obtain the solution. Interfaces to solvers on CRAN and elsewhere are provided, both commercial and open source.
Authors: Anqi Fu [aut, cre], Balasubramanian Narasimhan [aut], David W Kang [aut], Steven Diamond [aut], John Miller [aut], Stephen Boyd [ctb], Paul Kunsberg Rosenfield [ctb]
Maintainer: Anqi Fu <[email protected]>
License: Apache License 2.0 | file LICENSE
Version: 1.0-15
Built: 2024-11-07 20:44:54 UTC
Source: https://github.com/cvxgrp/cvxr

Help Index


The NegExpression class.

Description

This class represents the negation of an affine expression.

Usage

## S4 method for signature 'Expression,missing'
e1 - e2

## S4 method for signature 'Expression,Expression'
e1 - e2

## S4 method for signature 'Expression,ConstVal'
e1 - e2

## S4 method for signature 'ConstVal,Expression'
e1 - e2

## S4 method for signature 'NegExpression'
dim_from_args(object)

## S4 method for signature 'NegExpression'
sign_from_args(object)

## S4 method for signature 'NegExpression'
is_incr(object, idx)

## S4 method for signature 'NegExpression'
is_decr(object, idx)

## S4 method for signature 'NegExpression'
is_symmetric(object)

## S4 method for signature 'NegExpression'
is_hermitian(object)

## S4 method for signature 'NegExpression'
graph_implementation(object, arg_objs, dim, data = NA_real_)

Arguments

e1, e2

The Expression objects or numeric constants to subtract.

object

A NegExpression object.

idx

An index into the atom.

arg_objs

A list of linear expressions for each argument.

dim

A vector representing the dimensions of the resulting expression.

data

A list of additional data required by the atom.

Methods (by generic)

  • dim_from_args(NegExpression): The (row, col) dimensions of the expression.

  • sign_from_args(NegExpression): The (is positive, is negative) sign of the expression.

  • is_incr(NegExpression): The expression is not weakly increasing in any argument.

  • is_decr(NegExpression): The expression is weakly decreasing in every argument.

  • is_symmetric(NegExpression): Is the expression symmetric?

  • is_hermitian(NegExpression): Is the expression Hermitian?

  • graph_implementation(NegExpression): The graph implementation of the expression.


Get the sparse flag field for the LinOp object

Description

Get the sparse flag field for the LinOp object

Usage

.build_matrix_0(xp, v)

Arguments

xp

the LinOpVector Object XPtr

v

the id_to_col named int vector in R with integer names

Value

a XPtr to ProblemData Object


Get the sparse flag field for the LinOp object

Description

Get the sparse flag field for the LinOp object

Usage

.build_matrix_1(xp, v1, v2)

Arguments

xp

the LinOpVector Object XPtr

v1

the id_to_col named int vector in R with integer names

v2

the constr_offsets vector of offsets (an int vector in R)

Value

a XPtr to ProblemData Object


Compute a Matrix Decomposition.

Description

Compute sgn, scale, M such that P=sgnscaledot(M,t(M))P = sgn * scale * dot(M, t(M)).

Usage

.decomp_quad(P, cond = NA, rcond = NA)

Arguments

P

A real symmetric positive or negative (semi)definite input matrix

cond

Cutoff for small eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered negligible.

rcond

Cutoff for small eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered negligible.

Value

A list consisting of induced matrix 2-norm of P and a rectangular matrix such that P = scale * (dot(M1, t(M1)) - dot(M2, t(M2)))


Perform a push back operation on the args field of LinOp

Description

Perform a push back operation on the args field of LinOp

Usage

.LinOp__args_push_back(xp, yp)

Arguments

xp

the LinOp Object XPtr

yp

the LinOp Object XPtr to push


Get the field dense_data for the LinOp object

Description

Get the field dense_data for the LinOp object

Usage

.LinOp__get_dense_data(xp)

Arguments

xp

the LinOp Object XPtr

Value

a MatrixXd object


Get the id field of the LinOp Object

Description

Get the id field of the LinOp Object

Usage

.LinOp__get_id(xp)

Arguments

xp

the LinOp Object XPtr

Value

the value of the id field of the LinOp Object


Get the field size for the LinOp object

Description

Get the field size for the LinOp object

Usage

.LinOp__get_size(xp)

Arguments

xp

the LinOp Object XPtr

Value

an integer vector


Get the slice field of the LinOp Object

Description

Get the slice field of the LinOp Object

Usage

.LinOp__get_slice(xp)

Arguments

xp

the LinOp Object XPtr

Value

the value of the slice field of the LinOp Object


Get the sparse flag field for the LinOp object

Description

Get the sparse flag field for the LinOp object

Usage

.LinOp__get_sparse(xp)

Arguments

xp

the LinOp Object XPtr

Value

TRUE or FALSE


Get the field named sparse_data from the LinOp object

Description

Get the field named sparse_data from the LinOp object

Usage

.LinOp__get_sparse_data(xp)

Arguments

xp

the LinOp Object XPtr

Value

a dgCMatrix-class object


Get the field named type for the LinOp object

Description

Get the field named type for the LinOp object

Usage

.LinOp__get_type(xp)

Arguments

xp

the LinOp Object XPtr

Value

an integer value for type


Create a new LinOp object.

Description

Create a new LinOp object.

Usage

.LinOp__new()

Value

an external ptr (Rcpp::XPtr) to a LinOp object instance.


Set the field dense_data of the LinOp object

Description

Set the field dense_data of the LinOp object

Usage

.LinOp__set_dense_data(xp, denseMat)

Arguments

xp

the LinOp Object XPtr

denseMat

a standard matrix object in R


Set the field size of the LinOp object

Description

Set the field size of the LinOp object

Usage

.LinOp__set_size(xp, value)

Arguments

xp

the LinOp Object XPtr

value

an integer vector object in R


Set the slice field of the LinOp Object

Description

Set the slice field of the LinOp Object

Usage

.LinOp__set_slice(xp, value)

Arguments

xp

the LinOp Object XPtr

value

a list of integer vectors, e.g. list(1:10, 2L, 11:15)

Value

the value of the slice field of the LinOp Object


Set the flag sparse of the LinOp object

Description

Set the flag sparse of the LinOp object

Usage

.LinOp__set_sparse(xp, sparseSEXP)

Arguments

xp

the LinOp Object XPtr

sparseSEXP

an R boolean


Set the field named sparse_data of the LinOp object

Description

Set the field named sparse_data of the LinOp object

Usage

.LinOp__set_sparse_data(xp, sparseMat)

Arguments

xp

the LinOp Object XPtr

sparseMat

a dgCMatrix-class object


Set the field named type for the LinOp object

Description

Set the field named type for the LinOp object

Usage

.LinOp__set_type(xp, typeValue)

Arguments

xp

the LinOp Object XPtr

typeValue

an integer value


Perform a push back operation on the size field of LinOp

Description

Perform a push back operation on the size field of LinOp

Usage

.LinOp__size_push_back(xp, intVal)

Arguments

xp

the LinOp Object XPtr

intVal

the integer value to push back


Perform a push back operation on the slice field of LinOp

Description

Perform a push back operation on the slice field of LinOp

Usage

.LinOp__slice_push_back(xp, intVec)

Arguments

xp

the LinOp Object XPtr

intVec

an integer vector to push back


Return the LinOp element at index i (0-based)

Description

Return the LinOp element at index i (0-based)

Usage

.LinOp_at_index(lvec, i)

Arguments

lvec

the LinOpVector Object XPtr

i

the index


Create a new LinOpVector object.

Description

Create a new LinOpVector object.

Usage

.LinOpVector__new()

Value

an external ptr (Rcpp::XPtr) to a LinOp object instance.


Perform a push back operation on the args field of LinOp

Description

Perform a push back operation on the args field of LinOp

Usage

.LinOpVector__push_back(xp, yp)

Arguments

xp

the LinOpVector Object XPtr

yp

the LinOp Object XPtr to push


Internal method for calculating the p-norm

Description

Internal method for calculating the p-norm

Usage

.p_norm(x, p)

Arguments

x

A matrix

p

A number grater than or equal to 1, or equal to positive infinity

Value

Returns the specified norm of matrix x


Get the const_to_row field of the ProblemData Object

Description

Get the const_to_row field of the ProblemData Object

Usage

.ProblemData__get_const_to_row(xp)

Arguments

xp

the ProblemData Object XPtr

Value

the const_to_row field as a named integer vector where the names are integers converted to characters


Get the const_vec field from the ProblemData Object

Description

Get the const_vec field from the ProblemData Object

Usage

.ProblemData__get_const_vec(xp)

Arguments

xp

the ProblemData Object XPtr

Value

a numeric vector of the field const_vec from the ProblemData Object


Get the I field of the ProblemData Object

Description

Get the I field of the ProblemData Object

Usage

.ProblemData__get_I(xp)

Arguments

xp

the ProblemData Object XPtr

Value

an integer vector of the field I from the ProblemData Object


Get the id_to_col field of the ProblemData Object

Description

Get the id_to_col field of the ProblemData Object

Usage

.ProblemData__get_id_to_col(xp)

Arguments

xp

the ProblemData Object XPtr

Value

the id_to_col field as a named integer vector where the names are integers converted to characters


Get the J field of the ProblemData Object

Description

Get the J field of the ProblemData Object

Usage

.ProblemData__get_J(xp)

Arguments

xp

the ProblemData Object XPtr

Value

an integer vector of the field J from the ProblemData Object


Get the V field of the ProblemData Object

Description

Get the V field of the ProblemData Object

Usage

.ProblemData__get_V(xp)

Arguments

xp

the ProblemData Object XPtr

Value

a numeric vector of doubles (the field V) from the ProblemData Object


Create a new ProblemData object.

Description

Create a new ProblemData object.

Usage

.ProblemData__new()

Value

an external ptr (Rcpp::XPtr) to a ProblemData object instance.


Set the const_to_row map of the ProblemData Object

Description

Set the const_to_row map of the ProblemData Object

Usage

.ProblemData__set_const_to_row(xp, iv)

Arguments

xp

the ProblemData Object XPtr

iv

a named integer vector with names being integers converted to characters


Set the const_vec field in the ProblemData Object

Description

Set the const_vec field in the ProblemData Object

Usage

.ProblemData__set_const_vec(xp, cvp)

Arguments

xp

the ProblemData Object XPtr

cvp

a numeric vector of values for const_vec field of the ProblemData object


Set the I field in the ProblemData Object

Description

Set the I field in the ProblemData Object

Usage

.ProblemData__set_I(xp, ip)

Arguments

xp

the ProblemData Object XPtr

ip

an integer vector of values for field I of the ProblemData object


Set the id_to_col field of the ProblemData Object

Description

Set the id_to_col field of the ProblemData Object

Usage

.ProblemData__set_id_to_col(xp, iv)

Arguments

xp

the ProblemData Object XPtr

iv

a named integer vector with names being integers converted to characters


Set the J field in the ProblemData Object

Description

Set the J field in the ProblemData Object

Usage

.ProblemData__set_J(xp, jp)

Arguments

xp

the ProblemData Object XPtr

jp

an integer vector of the values for field J of the ProblemData object


Set the V field in the ProblemData Object

Description

Set the V field in the ProblemData Object

Usage

.ProblemData__set_V(xp, vp)

Arguments

xp

the ProblemData Object XPtr

vp

a numeric vector of values for field V


The SpecialIndex class.

Description

This class represents indexing using logical indexing or a list of indices into a matrix.

Usage

## S4 method for signature 'Expression,index,missing,ANY'
x[i, j, ..., drop = TRUE]

## S4 method for signature 'Expression,missing,index,ANY'
x[i, j, ..., drop = TRUE]

## S4 method for signature 'Expression,index,index,ANY'
x[i, j, ..., drop = TRUE]

## S4 method for signature 'Expression,matrix,index,ANY'
x[i, j, ..., drop = TRUE]

## S4 method for signature 'Expression,index,matrix,ANY'
x[i, j, ..., drop = TRUE]

## S4 method for signature 'Expression,matrix,matrix,ANY'
x[i, j, ..., drop = TRUE]

## S4 method for signature 'Expression,matrix,missing,ANY'
x[i, j, ..., drop = TRUE]

SpecialIndex(expr, key)

## S4 method for signature 'SpecialIndex'
name(x)

## S4 method for signature 'SpecialIndex'
is_atom_log_log_convex(object)

## S4 method for signature 'SpecialIndex'
is_atom_log_log_concave(object)

## S4 method for signature 'SpecialIndex'
get_data(object)

## S4 method for signature 'SpecialIndex'
.grad(object)

Arguments

x, object

An Index object.

i, j

The row and column indices of the slice.

...

(Unimplemented) Optional arguments.

drop

(Unimplemented) A logical value indicating whether the result should be coerced to the lowest possible dimension.

expr

An Expression representing a vector or matrix.

key

A list containing the start index, end index, and step size of the slice.

Methods (by generic)

  • name(SpecialIndex): Returns the index in string form.

  • is_atom_log_log_convex(SpecialIndex): Is the atom log-log convex?

  • is_atom_log_log_concave(SpecialIndex): Is the atom log-log concave?

  • get_data(SpecialIndex): A list containing key.

  • .grad(SpecialIndex): Gives the (sub/super)gradient of the atom w.r.t. each variable

Slots

expr

An Expression representing a vector or matrix.

key

A list containing the start index, end index, and step size of the slice.


The Index class.

Description

This class represents indexing or slicing into a matrix.

Usage

## S4 method for signature 'Expression,missing,missing,ANY'
x[i, j, ..., drop = TRUE]

## S4 method for signature 'Expression,numeric,missing,ANY'
x[i, j, ..., drop = TRUE]

## S4 method for signature 'Expression,missing,numeric,ANY'
x[i, j, ..., drop = TRUE]

## S4 method for signature 'Expression,numeric,numeric,ANY'
x[i, j, ..., drop = TRUE]

Index(expr, key)

## S4 method for signature 'Index'
to_numeric(object, values)

## S4 method for signature 'Index'
dim_from_args(object)

## S4 method for signature 'Index'
is_atom_log_log_convex(object)

## S4 method for signature 'Index'
is_atom_log_log_concave(object)

## S4 method for signature 'Index'
get_data(object)

## S4 method for signature 'Index'
graph_implementation(object, arg_objs, dim, data = NA_real_)

## S4 method for signature 'SpecialIndex'
to_numeric(object, values)

## S4 method for signature 'SpecialIndex'
dim_from_args(object)

Arguments

x

A Expression object.

i, j

The row and column indices of the slice.

...

(Unimplemented) Optional arguments.

drop

(Unimplemented) A logical value indicating whether the result should be coerced to the lowest possible dimension.

expr

An Expression representing a vector or matrix.

key

A list containing the start index, end index, and step size of the slice.

object

An Index object.

values

A list of arguments to the atom.

arg_objs

A list of linear expressions for each argument.

dim

A vector representing the dimensions of the resulting expression.

data

A list of additional data required by the atom.

Methods (by generic)

  • to_numeric(Index): The index/slice into the given value.

  • dim_from_args(Index): The dimensions of the atom.

  • is_atom_log_log_convex(Index): Is the atom log-log convex?

  • is_atom_log_log_concave(Index): Is the atom log-log concave?

  • get_data(Index): A list containing key.

  • graph_implementation(Index): The graph implementation of the atom.

  • to_numeric(SpecialIndex): The index/slice into the given value.

  • dim_from_args(SpecialIndex): The dimensions of the atom.

Slots

expr

An Expression representing a vector or matrix.

key

A list containing the start index, end index, and step size of the slice.


Elementwise multiplication operator

Description

Elementwise multiplication operator

Usage

## S4 method for signature 'Expression,Expression'
e1 * e2

## S4 method for signature 'Expression,ConstVal'
e1 * e2

## S4 method for signature 'ConstVal,Expression'
e1 * e2

Arguments

e1, e2

The Expression objects or numeric constants to multiply elementwise.


The DivExpression class.

Description

This class represents one expression divided by another expression.

Usage

## S4 method for signature 'Expression,Expression'
e1 / e2

## S4 method for signature 'Expression,ConstVal'
e1 / e2

## S4 method for signature 'ConstVal,Expression'
e1 / e2

## S4 method for signature 'DivExpression'
to_numeric(object, values)

## S4 method for signature 'DivExpression'
is_quadratic(object)

## S4 method for signature 'DivExpression'
is_qpwa(object)

## S4 method for signature 'DivExpression'
dim_from_args(object)

## S4 method for signature 'DivExpression'
is_atom_convex(object)

## S4 method for signature 'DivExpression'
is_atom_concave(object)

## S4 method for signature 'DivExpression'
is_atom_log_log_convex(object)

## S4 method for signature 'DivExpression'
is_atom_log_log_concave(object)

## S4 method for signature 'DivExpression'
is_incr(object, idx)

## S4 method for signature 'DivExpression'
is_decr(object, idx)

## S4 method for signature 'DivExpression'
graph_implementation(object, arg_objs, dim, data = NA_real_)

Arguments

e1, e2

The Expression objects or numeric constants to divide. The denominator, e2, must be a scalar constant.

object

A DivExpression object.

values

A list of arguments to the atom.

idx

An index into the atom.

arg_objs

A list of linear expressions for each argument.

dim

A vector representing the dimensions of the resulting expression.

data

A list of additional data required by the atom.

Methods (by generic)

  • to_numeric(DivExpression): Matrix division by a scalar.

  • is_quadratic(DivExpression): Is the left-hand expression quadratic and the right-hand expression constant?

  • is_qpwa(DivExpression): Is the expression quadratic of piecewise affine?

  • dim_from_args(DivExpression): The (row, col) dimensions of the left-hand expression.

  • is_atom_convex(DivExpression): Division is convex (affine) in its arguments only if the denominator is constant.

  • is_atom_concave(DivExpression): Division is concave (affine) in its arguments only if the denominator is constant.

  • is_atom_log_log_convex(DivExpression): Is the atom log-log convex?

  • is_atom_log_log_concave(DivExpression): Is the atom log-log concave?

  • is_incr(DivExpression): Is the right-hand expression positive?

  • is_decr(DivExpression): Is the right-hand expression negative?

  • graph_implementation(DivExpression): The graph implementation of the expression.


The MulExpression class.

Description

This class represents the matrix product of two linear expressions. See Multiply for the elementwise product.

Usage

## S4 method for signature 'Expression,Expression'
x %*% y

## S4 method for signature 'Expression,ConstVal'
x %*% y

## S4 method for signature 'ConstVal,Expression'
x %*% y

## S4 method for signature 'MulExpression'
to_numeric(object, values)

## S4 method for signature 'MulExpression'
dim_from_args(object)

## S4 method for signature 'MulExpression'
is_atom_convex(object)

## S4 method for signature 'MulExpression'
is_atom_concave(object)

## S4 method for signature 'MulExpression'
is_atom_log_log_convex(object)

## S4 method for signature 'MulExpression'
is_atom_log_log_concave(object)

## S4 method for signature 'MulExpression'
is_incr(object, idx)

## S4 method for signature 'MulExpression'
is_decr(object, idx)

## S4 method for signature 'MulExpression'
.grad(object, values)

## S4 method for signature 'MulExpression'
graph_implementation(object, arg_objs, dim, data = NA_real_)

Arguments

x, y

The Expression objects or numeric constants to multiply.

object

A MulExpression object.

values

A list of numeric values for the arguments

idx

An index into the atom.

arg_objs

A list of linear expressions for each argument.

dim

A vector representing the dimensions of the resulting expression.

data

A list of additional data required by the atom.

Methods (by generic)

  • to_numeric(MulExpression): Matrix multiplication.

  • dim_from_args(MulExpression): The (row, col) dimensions of the expression.

  • is_atom_convex(MulExpression): Multiplication is convex (affine) in its arguments only if one of the arguments is constant.

  • is_atom_concave(MulExpression): If the multiplication atom is convex, then it is affine.

  • is_atom_log_log_convex(MulExpression): Is the atom log-log convex?

  • is_atom_log_log_concave(MulExpression): Is the atom log-log concave?

  • is_incr(MulExpression): Is the left-hand expression positive?

  • is_decr(MulExpression): Is the left-hand expression negative?

  • .grad(MulExpression): Gives the (sub/super)gradient of the atom w.r.t. each variable

  • graph_implementation(MulExpression): The graph implementation of the expression.

See Also

Multiply


The PSDConstraint class.

Description

This class represents the positive semidefinite constraint, 12(X+XT)0\frac{1}{2}(X + X^T) \succeq 0, i.e. zT(X+XT)z0z^T(X + X^T)z \geq 0 for all zz.

Usage

e1 %>>% e2

e1 %<<% e2

## S4 method for signature 'Expression,Expression'
e1 %>>% e2

## S4 method for signature 'Expression,ConstVal'
e1 %>>% e2

## S4 method for signature 'ConstVal,Expression'
e1 %>>% e2

## S4 method for signature 'Expression,Expression'
e1 %<<% e2

## S4 method for signature 'Expression,ConstVal'
e1 %<<% e2

## S4 method for signature 'ConstVal,Expression'
e1 %<<% e2

PSDConstraint(expr, id = NA_integer_)

## S4 method for signature 'PSDConstraint'
name(x)

## S4 method for signature 'PSDConstraint'
is_dcp(object)

## S4 method for signature 'PSDConstraint'
is_dgp(object)

## S4 method for signature 'PSDConstraint'
residual(object)

## S4 method for signature 'PSDConstraint'
canonicalize(object)

Arguments

e1, e2

The Expression objects or numeric constants to compare.

expr

An Expression, numeric element, vector, or matrix representing XX.

id

(Optional) A numeric value representing the constraint ID.

x, object

A PSDConstraint object.

Methods (by generic)

  • name(PSDConstraint): The string representation of the constraint.

  • is_dcp(PSDConstraint): The constraint is DCP if the left-hand and right-hand expressions are affine.

  • is_dgp(PSDConstraint): Is the constraint DGP?

  • residual(PSDConstraint): A Expression representing the residual of the constraint.

  • canonicalize(PSDConstraint): The graph implementation of the object. Marks the top level constraint as the dual_holder so the dual value will be saved to the PSDConstraint.

Slots

expr

An Expression, numeric element, vector, or matrix representing XX.


Elementwise Power

Description

Raises each element of the input to the power pp. If expr is a CVXR expression, then expr^p is equivalent to power(expr,p).

Usage

## S4 method for signature 'Expression,numeric'
e1 ^ e2

power(x, p, max_denom = 1024)

Arguments

e1

An Expression object to exponentiate.

e2

The power of the exponential. Must be a numeric scalar.

x

An Expression, vector, or matrix.

p

A scalar value indicating the exponential power.

max_denom

The maximum denominator considered in forming a rational approximation of p.

Details

For p=0p = 0 and f(x)=1f(x) = 1, this function is constant and positive. For p=1p = 1 and f(x)=xf(x) = x, this function is affine, increasing, and the same sign as xx. For p=2,4,8,p = 2,4,8,\ldots and f(x)=xpf(x) = |x|^p, this function is convex, positive, with signed monotonicity. For p<0p < 0 and f(x)=f(x) =

xpx^p

for x>0x > 0

++\infty

x0x \leq 0

, this function is convex, decreasing, and positive. For 0<p<10 < p < 1 and f(x)=f(x) =

xpx^p

for x0x \geq 0

-\infty

x<0x < 0

, this function is concave, increasing, and positivea. For p>1,p2,4,8,p > 1, p \neq 2,4,8,\ldots and f(x)=f(x) =

xpx^p

for x0x \geq 0

++\infty

x<0x < 0

, this function is convex, increasing, and positive.

Examples

## Not run: 
x <- Variable()
prob <- Problem(Minimize(power(x,1.7) + power(x,-2.3) - power(x,0.45)))
result <- solve(prob)
result$value
result$getValue(x)

## End(Not run)

The AddExpression class.

Description

This class represents the sum of any number of expressions.

Usage

## S4 method for signature 'Expression,missing'
e1 + e2

## S4 method for signature 'Expression,Expression'
e1 + e2

## S4 method for signature 'Expression,ConstVal'
e1 + e2

## S4 method for signature 'ConstVal,Expression'
e1 + e2

## S4 method for signature 'AddExpression'
dim_from_args(object)

## S4 method for signature 'AddExpression'
name(x)

## S4 method for signature 'AddExpression'
to_numeric(object, values)

## S4 method for signature 'AddExpression'
is_atom_log_log_convex(object)

## S4 method for signature 'AddExpression'
is_atom_log_log_concave(object)

## S4 method for signature 'AddExpression'
is_symmetric(object)

## S4 method for signature 'AddExpression'
is_hermitian(object)

## S4 method for signature 'AddExpression'
copy(object, args = NULL, id_objects = list())

## S4 method for signature 'AddExpression'
graph_implementation(object, arg_objs, dim, data = NA_real_)

Arguments

e1, e2

The Expression objects or numeric constants to add.

x, object

An AddExpression object.

values

A list of arguments to the atom.

args

An optional list of arguments to reconstruct the atom. Default is to use current args of the atom.

id_objects

Currently unused.

arg_objs

A list of linear expressions for each argument.

dim

A vector representing the dimensions of the resulting expression.

data

A list of additional data required by the atom.

Methods (by generic)

  • dim_from_args(AddExpression): The dimensions of the expression.

  • name(AddExpression): The string form of the expression.

  • to_numeric(AddExpression): Sum all the values.

  • is_atom_log_log_convex(AddExpression): Is the atom log-log convex?

  • is_atom_log_log_concave(AddExpression): Is the atom log-log convex?

  • is_symmetric(AddExpression): Is the atom symmetric?

  • is_hermitian(AddExpression): Is the atom hermitian?

  • copy(AddExpression): Returns a shallow copy of the AddExpression atom

  • graph_implementation(AddExpression): The graph implementation of the expression.

Slots

arg_groups

A list of Expressions and numeric data.frame, matrix, or vector objects.


The IneqConstraint class

Description

The IneqConstraint class

Usage

## S4 method for signature 'Expression,Expression'
e1 <= e2

## S4 method for signature 'Expression,ConstVal'
e1 <= e2

## S4 method for signature 'ConstVal,Expression'
e1 <= e2

## S4 method for signature 'Expression,Expression'
e1 < e2

## S4 method for signature 'Expression,ConstVal'
e1 < e2

## S4 method for signature 'ConstVal,Expression'
e1 < e2

## S4 method for signature 'Expression,Expression'
e1 >= e2

## S4 method for signature 'Expression,ConstVal'
e1 >= e2

## S4 method for signature 'ConstVal,Expression'
e1 >= e2

## S4 method for signature 'Expression,Expression'
e1 > e2

## S4 method for signature 'Expression,ConstVal'
e1 > e2

## S4 method for signature 'ConstVal,Expression'
e1 > e2

## S4 method for signature 'IneqConstraint'
name(x)

## S4 method for signature 'IneqConstraint'
dim(x)

## S4 method for signature 'IneqConstraint'
size(object)

## S4 method for signature 'IneqConstraint'
expr(object)

## S4 method for signature 'IneqConstraint'
is_dcp(object)

## S4 method for signature 'IneqConstraint'
is_dgp(object)

## S4 method for signature 'IneqConstraint'
residual(object)

Arguments

e1, e2

The Expression objects or numeric constants to compare.

x, object

A IneqConstraint object.

Methods (by generic)

  • name(IneqConstraint): The string representation of the constraint.

  • dim(IneqConstraint): The dimensions of the constrained expression.

  • size(IneqConstraint): The size of the constrained expression.

  • expr(IneqConstraint): The expression to constrain.

  • is_dcp(IneqConstraint): A non-positive constraint is DCP if its argument is convex.

  • is_dgp(IneqConstraint): Is the constraint DGP?

  • residual(IneqConstraint): The residual of the constraint.


The EqConstraint class

Description

The EqConstraint class

Usage

## S4 method for signature 'Expression,Expression'
e1 == e2

## S4 method for signature 'Expression,ConstVal'
e1 == e2

## S4 method for signature 'ConstVal,Expression'
e1 == e2

## S4 method for signature 'EqConstraint'
name(x)

## S4 method for signature 'EqConstraint'
dim(x)

## S4 method for signature 'EqConstraint'
size(object)

## S4 method for signature 'EqConstraint'
expr(object)

## S4 method for signature 'EqConstraint'
is_dcp(object)

## S4 method for signature 'EqConstraint'
is_dgp(object)

## S4 method for signature 'EqConstraint'
residual(object)

Arguments

e1, e2

The Expression objects or numeric constants to compare.

x, object

A EqConstraint object.

Methods (by generic)

  • name(EqConstraint): The string representation of the constraint.

  • dim(EqConstraint): The dimensions of the constrained expression.

  • size(EqConstraint): The size of the constrained expression.

  • expr(EqConstraint): The expression to constrain.

  • is_dcp(EqConstraint): Is the constraint DCP?

  • is_dgp(EqConstraint): Is the constraint DGP?

  • residual(EqConstraint): The residual of the constraint..


The Abs class.

Description

This class represents the elementwise absolute value.

Usage

Abs(x)

## S4 method for signature 'Abs'
to_numeric(object, values)

## S4 method for signature 'Abs'
allow_complex(object)

## S4 method for signature 'Abs'
sign_from_args(object)

## S4 method for signature 'Abs'
is_atom_convex(object)

## S4 method for signature 'Abs'
is_atom_concave(object)

## S4 method for signature 'Abs'
is_incr(object, idx)

## S4 method for signature 'Abs'
is_decr(object, idx)

## S4 method for signature 'Abs'
is_pwl(object)

Arguments

x

An Expression object.

object

An Abs object.

values

A list of arguments to the atom.

idx

An index into the atom.

Methods (by generic)

  • to_numeric(Abs): The elementwise absolute value of the input.

  • allow_complex(Abs): Does the atom handle complex numbers?

  • sign_from_args(Abs): The atom is positive.

  • is_atom_convex(Abs): The atom is convex.

  • is_atom_concave(Abs): The atom is not concave.

  • is_incr(Abs): A logical value indicating whether the atom is weakly increasing.

  • is_decr(Abs): A logical value indicating whether the atom is weakly decreasing.

  • is_pwl(Abs): Is x piecewise linear?

Slots

x

An Expression object.


Absolute Value

Description

The elementwise absolute value.

Usage

## S4 method for signature 'Expression'
abs(x)

Arguments

x

An Expression.

Value

An Expression representing the absolute value of the input.

Examples

A <- Variable(2,2)
prob <- Problem(Minimize(sum(abs(A))), list(A <= -2))
result <- solve(prob)
result$value
result$getValue(A)

Reduction Acceptance

Description

Determine whether the reduction accepts a problem.

Usage

accepts(object, problem)

Arguments

object

A Reduction object.

problem

A Problem to check.

Value

A logical value indicating whether the reduction can be applied.


The AffAtom class.

Description

This virtual class represents an affine atomic expression.

Usage

## S4 method for signature 'AffAtom'
allow_complex(object)

## S4 method for signature 'AffAtom'
sign_from_args(object)

## S4 method for signature 'AffAtom'
is_imag(object)

## S4 method for signature 'AffAtom'
is_complex(object)

## S4 method for signature 'AffAtom'
is_atom_convex(object)

## S4 method for signature 'AffAtom'
is_atom_concave(object)

## S4 method for signature 'AffAtom'
is_incr(object, idx)

## S4 method for signature 'AffAtom'
is_decr(object, idx)

## S4 method for signature 'AffAtom'
is_quadratic(object)

## S4 method for signature 'AffAtom'
is_qpwa(object)

## S4 method for signature 'AffAtom'
is_pwl(object)

## S4 method for signature 'AffAtom'
is_psd(object)

## S4 method for signature 'AffAtom'
is_nsd(object)

## S4 method for signature 'AffAtom'
.grad(object, values)

Arguments

object

An AffAtom object.

idx

An index into the atom.

values

A list of numeric values for the arguments

Methods (by generic)

  • allow_complex(AffAtom): Does the atom handle complex numbers?

  • sign_from_args(AffAtom): The sign of the atom.

  • is_imag(AffAtom): Is the atom imaginary?

  • is_complex(AffAtom): Is the atom complex valued?

  • is_atom_convex(AffAtom): The atom is convex.

  • is_atom_concave(AffAtom): The atom is concave.

  • is_incr(AffAtom): The atom is weakly increasing in every argument.

  • is_decr(AffAtom): The atom is not weakly decreasing in any argument.

  • is_quadratic(AffAtom): Is every argument quadratic?

  • is_qpwa(AffAtom): Is every argument quadratic of piecewise affine?

  • is_pwl(AffAtom): Is every argument piecewise linear?

  • is_psd(AffAtom): Is the atom a positive semidefinite matrix?

  • is_nsd(AffAtom): Is the atom a negative semidefinite matrix?

  • .grad(AffAtom): Gives the (sub/super)gradient of the atom w.r.t. each variable


Are the arguments affine?

Description

Are the arguments affine?

Usage

are_args_affine(constraints)

Arguments

constraints

A Constraint object.

Value

All the affine arguments in given constraints.


The Atom class.

Description

This virtual class represents atomic expressions in CVXR.

Usage

## S4 method for signature 'Atom'
name(x)

## S4 method for signature 'Atom'
validate_args(object)

## S4 method for signature 'Atom'
dim(x)

## S4 method for signature 'Atom'
nrow(x)

## S4 method for signature 'Atom'
ncol(x)

## S4 method for signature 'Atom'
allow_complex(object)

## S4 method for signature 'Atom'
is_nonneg(object)

## S4 method for signature 'Atom'
is_nonpos(object)

## S4 method for signature 'Atom'
is_imag(object)

## S4 method for signature 'Atom'
is_complex(object)

## S4 method for signature 'Atom'
is_convex(object)

## S4 method for signature 'Atom'
is_concave(object)

## S4 method for signature 'Atom'
is_log_log_convex(object)

## S4 method for signature 'Atom'
is_log_log_concave(object)

## S4 method for signature 'Atom'
canonicalize(object)

## S4 method for signature 'Atom'
graph_implementation(object, arg_objs, dim, data = NA_real_)

## S4 method for signature 'Atom'
value_impl(object)

## S4 method for signature 'Atom'
value(object)

## S4 method for signature 'Atom'
grad(object)

## S4 method for signature 'Atom'
domain(object)

## S4 method for signature 'Atom'
atoms(object)

Arguments

x, object

An Atom object.

arg_objs

A list of linear expressions for each argument.

dim

A vector with two elements representing the dimensions of the resulting expression.

data

A list of additional data required by the atom.

Methods (by generic)

  • name(Atom): Returns the string representtation of the function call

  • validate_args(Atom): Raises an error if the arguments are invalid.

  • dim(Atom): The c(row, col) dimensions of the atom.

  • nrow(Atom): The number of rows in the atom.

  • ncol(Atom): The number of columns in the atom.

  • allow_complex(Atom): Does the atom handle complex numbers?

  • is_nonneg(Atom): A logical value indicating whether the atom is nonnegative.

  • is_nonpos(Atom): A logical value indicating whether the atom is nonpositive.

  • is_imag(Atom): A logical value indicating whether the atom is imaginary.

  • is_complex(Atom): A logical value indicating whether the atom is complex valued.

  • is_convex(Atom): A logical value indicating whether the atom is convex.

  • is_concave(Atom): A logical value indicating whether the atom is concave.

  • is_log_log_convex(Atom): A logical value indicating whether the atom is log-log convex.

  • is_log_log_concave(Atom): A logical value indicating whether the atom is log-log concave.

  • canonicalize(Atom): Represent the atom as an affine objective and conic constraints.

  • graph_implementation(Atom): The graph implementation of the atom.

  • value_impl(Atom): Returns the value of each of the componets in an Atom. Returns an empty matrix if it's an empty atom

  • value(Atom): Returns the value of the atom.

  • grad(Atom): The (sub/super)-gradient of the atom with respect to each variable.

  • domain(Atom): A list of constraints describing the closure of the region where the expression is finite.

  • atoms(Atom): Returns a list of the atom types present amongst this atom's arguments


The AxisAtom class.

Description

This virtual class represents atomic expressions that can be applied along an axis in CVXR.

Usage

## S4 method for signature 'AxisAtom'
dim_from_args(object)

## S4 method for signature 'AxisAtom'
get_data(object)

## S4 method for signature 'AxisAtom'
validate_args(object)

## S4 method for signature 'AxisAtom'
.axis_grad(object, values)

## S4 method for signature 'AxisAtom'
.column_grad(object, value)

Arguments

object

An Atom object.

values

A list of numeric values for the arguments

value

A numeric value

Methods (by generic)

  • dim_from_args(AxisAtom): The dimensions of the atom determined from its arguments.

  • get_data(AxisAtom): A list containing axis and keepdims.

  • validate_args(AxisAtom): Check that the new dimensions have the same number of entries as the old.

  • .axis_grad(AxisAtom): Gives the (sub/super)gradient of the atom w.r.t. each variable

  • .column_grad(AxisAtom): Gives the (sub/super)gradient of the atom w.r.t. each column variable

Slots

expr

A numeric element, data.frame, matrix, vector, or Expression.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.

keepdims

(Optional) Should dimensions be maintained when applying the atom along an axis? If FALSE, result will be collapsed into an nx1n x 1 column vector. The default is FALSE.


The BinaryOperator class.

Description

This base class represents expressions involving binary operators.

Usage

## S4 method for signature 'BinaryOperator'
name(x)

## S4 method for signature 'BinaryOperator'
to_numeric(object, values)

## S4 method for signature 'BinaryOperator'
sign_from_args(object)

## S4 method for signature 'BinaryOperator'
is_imag(object)

## S4 method for signature 'BinaryOperator'
is_complex(object)

Arguments

x, object

A BinaryOperator object.

values

A list of arguments to the atom.

Methods (by generic)

  • name(BinaryOperator): Returns the name of the BinaryOperator object.

  • to_numeric(BinaryOperator): Apply the binary operator to the values.

  • sign_from_args(BinaryOperator): Default to rule for multiplication.

  • is_imag(BinaryOperator): Is the expression imaginary?

  • is_complex(BinaryOperator): Is the expression complex valued?

Slots

lh_exp

The Expression on the left-hand side of the operator.

rh_exp

The Expression on the right-hand side of the operator.

op_name

A character string indicating the binary operation.


Block Matrix

Description

Constructs a block matrix from a list of lists. Each internal list is stacked horizontally, and the internal lists are stacked vertically.

Usage

bmat(block_lists)

Arguments

block_lists

A list of lists containing Expression objects, matrices, or vectors, which represent the blocks of the block matrix.

Value

An Expression representing the block matrix.

Examples

x <- Variable()
expr <- bmat(list(list(matrix(1, nrow = 3, ncol = 1), matrix(2, nrow = 3, ncol = 2)),
                list(matrix(3, nrow = 1, ncol = 2), x)
             ))
prob <- Problem(Minimize(sum_entries(expr)), list(x >= 0))
result <- solve(prob)
result$value

The CallbackParam class.

Description

This class represents a parameter whose value is obtained by evaluating a function.

Usage

CallbackParam(callback, dim = NULL, ...)

## S4 method for signature 'CallbackParam'
value(object)

Arguments

callback

A callback function that generates the parameter value.

dim

The dimensions of the parameter.

...

Additional attribute arguments. See Leaf for details.

object

A CallbackParam object.

Slots

callback

A callback function that generates the parameter value.

dim

The dimensions of the parameter.

Examples

x <- Variable(2)
fun <- function() { value(x) }
y <- CallbackParam(fun, dim(x), nonneg = TRUE)
get_data(y)

The Canonical class.

Description

This virtual class represents a canonical expression.

Usage

## S4 method for signature 'Canonical'
expr(object)

## S4 method for signature 'Canonical'
id(object)

## S4 method for signature 'Canonical'
canonical_form(object)

## S4 method for signature 'Canonical'
variables(object)

## S4 method for signature 'Canonical'
parameters(object)

## S4 method for signature 'Canonical'
constants(object)

## S4 method for signature 'Canonical'
atoms(object)

## S4 method for signature 'Canonical'
get_data(object)

Arguments

object

A Canonical object.

Methods (by generic)

  • expr(Canonical): The expression associated with the input.

  • id(Canonical): The unique ID of the canonical expression.

  • canonical_form(Canonical): The graph implementation of the input.

  • variables(Canonical): List of Variable objects in the expression.

  • parameters(Canonical): List of Parameter objects in the expression.

  • constants(Canonical): List of Constant objects in the expression.

  • atoms(Canonical): List of Atom objects in the expression.

  • get_data(Canonical): Information needed to reconstruct the expression aside from its arguments.


The Canonicalization class.

Description

This class represents a canonicalization reduction.

Usage

## S4 method for signature 'Canonicalization,Problem'
perform(object, problem)

## S4 method for signature 'Canonicalization,Solution,InverseData'
invert(object, solution, inverse_data)

## S4 method for signature 'Canonicalization'
canonicalize_tree(object, expr)

## S4 method for signature 'Canonicalization'
canonicalize_expr(object, expr, args)

Arguments

object

A Canonicalization object.

problem

A Problem object.

solution

A Solution to a problem that generated the inverse data.

inverse_data

An InverseData object that contains the data encoding the original problem.

expr

An Expression object.

args

List of arguments to canonicalize the expression.

Methods (by generic)

  • perform(object = Canonicalization, problem = Problem): Recursively canonicalize the objective and every constraint.

  • invert( object = Canonicalization, solution = Solution, inverse_data = InverseData ): Performs the reduction on a problem and returns an equivalent problem.

  • canonicalize_tree(Canonicalization): Recursively canonicalize an Expression.

  • canonicalize_expr(Canonicalization): Canonicalize an expression, w.r.t. canonicalized arguments.


Canonicalize

Description

Computes the graph implementation of a canonical expression.

Usage

canonicalize(object)

canonical_form(object)

Arguments

object

A Canonical object.

Value

A list of list(affine expression, list(constraints)).


An interface to the CBC solver

Description

An interface to the CBC solver

Usage

CBC_CONIC()

## S4 method for signature 'CBC_CONIC'
mip_capable(solver)

## S4 method for signature 'CBC_CONIC'
status_map(solver, status)

## S4 method for signature 'CBC_CONIC'
status_map_mip(solver, status)

## S4 method for signature 'CBC_CONIC'
status_map_lp(solver, status)

## S4 method for signature 'CBC_CONIC'
name(x)

## S4 method for signature 'CBC_CONIC'
import_solver(solver)

## S4 method for signature 'CBC_CONIC,Problem'
accepts(object, problem)

## S4 method for signature 'CBC_CONIC,Problem'
perform(object, problem)

## S4 method for signature 'CBC_CONIC,list,list'
invert(object, solution, inverse_data)

## S4 method for signature 'CBC_CONIC'
solve_via_data(
  object,
  data,
  warm_start,
  verbose,
  feastol,
  reltol,
  abstol,
  num_iter,
  solver_opts,
  solver_cache
)

Arguments

solver, object, x

A CBC_CONIC object.

status

A status code returned by the solver.

problem

A Problem object.

solution

The raw solution returned by the solver.

inverse_data

A list containing data necessary for the inversion.

data

Data generated via an apply call.

warm_start

A boolean of whether to warm start the solver.

verbose

A boolean of whether to enable solver verbosity.

feastol

The feasible tolerance.

reltol

The relative tolerance.

abstol

The absolute tolerance.

num_iter

The maximum number of iterations.

solver_opts

A list of Solver specific options

solver_cache

Cache for the solver.

Methods (by generic)

  • mip_capable(CBC_CONIC): Can the solver handle mixed-integer programs?

  • status_map(CBC_CONIC): Converts status returned by the CBC solver to its respective CVXPY status.

  • status_map_mip(CBC_CONIC): Converts status returned by the CBC solver to its respective CVXPY status for mixed integer problems.

  • status_map_lp(CBC_CONIC): Converts status returned by the CBC solver to its respective CVXPY status for linear problems.

  • name(CBC_CONIC): Returns the name of the solver

  • import_solver(CBC_CONIC): Imports the solver

  • accepts(object = CBC_CONIC, problem = Problem): Can CBC_CONIC solve the problem?

  • perform(object = CBC_CONIC, problem = Problem): Returns a new problem and data for inverting the new solution.

  • invert(object = CBC_CONIC, solution = list, inverse_data = list): Returns the solution to the original problem given the inverse_data.

  • solve_via_data(CBC_CONIC): Solve a problem represented by data returned from apply.


Global Monthly and Annual Temperature Anomalies (degrees C), 1850-2015 (Relative to the 1961-1990 Mean) (May 2016)

Description

Global Monthly and Annual Temperature Anomalies (degrees C), 1850-2015 (Relative to the 1961-1990 Mean) (May 2016)

Usage

cdiac

Format

A data frame with 166 rows and 14 variables:

year

Year

jan

Anomaly for month of January

feb

Anomaly for month of February

mar

Anomaly for month of March

apr

Anomaly for month of April

may

Anomaly for month of May

jun

Anomaly for month of June

jul

Anomaly for month of July

aug

Anomaly for month of August

sep

Anomaly for month of September

oct

Anomaly for month of October

nov

Anomaly for month of November

dec

Anomaly for month of December

annual

Annual anomaly for the year

Source

https://ess-dive.lbl.gov/

References

https://ess-dive.lbl.gov/


The Chain class.

Description

This class represents a reduction that replaces symbolic parameters with their constraint values.

Usage

## S4 method for signature 'Chain'
as.character(x)

## S4 method for signature 'Chain,Problem'
accepts(object, problem)

## S4 method for signature 'Chain,Problem'
perform(object, problem)

## S4 method for signature 'Chain,SolutionORList,list'
invert(object, solution, inverse_data)

Arguments

x, object

A Chain object.

problem

A Problem object to check.

solution

A Solution or list.

inverse_data

A list that contains the data encoding the original problem.

Methods (by generic)

  • accepts(object = Chain, problem = Problem): A problem is accepted if the sequence of reductions is valid. In particular, the i-th reduction must accept the output of the i-1th reduction, with the first reduction (self.reductions[0]) in the sequence taking as input the supplied problem.

  • perform(object = Chain, problem = Problem): Applies the chain to a problem and returns an equivalent problem.

  • invert(object = Chain, solution = SolutionORList, inverse_data = list): Performs the reduction on a problem and returns an equivalent problem.


An interface for the CLARABEL solver

Description

An interface for the CLARABEL solver

Usage

CLARABEL()

## S4 method for signature 'CLARABEL'
mip_capable(solver)

## S4 method for signature 'CLARABEL'
status_map(solver, status)

## S4 method for signature 'CLARABEL'
name(x)

## S4 method for signature 'CLARABEL'
import_solver(solver)

## S4 method for signature 'CLARABEL'
reduction_format_constr(object, problem, constr, exp_cone_order)

## S4 method for signature 'CLARABEL,Problem'
perform(object, problem)

## S4 method for signature 'CLARABEL,list,list'
invert(object, solution, inverse_data)

## S4 method for signature 'CLARABEL'
solve_via_data(
  object,
  data,
  warm_start,
  verbose,
  feastol,
  reltol,
  abstol,
  num_iter,
  solver_opts,
  solver_cache
)

Arguments

solver, object, x

A CLARABEL object.

status

A status code returned by the solver.

problem

A Problem object.

constr

A Constraint to format.

exp_cone_order

A list indicating how the exponential cone arguments are ordered.

solution

The raw solution returned by the solver.

inverse_data

A list containing data necessary for the inversion.

data

Data generated via an apply call.

warm_start

A boolean of whether to warm start the solver.

verbose

A boolean of whether to enable solver verbosity.

feastol

The feasible tolerance on the primal and dual residual.

reltol

The relative tolerance on the duality gap.

abstol

The absolute tolerance on the duality gap.

num_iter

The maximum number of iterations.

solver_opts

A list of Solver specific options

solver_cache

Cache for the solver.

Methods (by generic)

  • mip_capable(CLARABEL): Can the solver handle mixed-integer programs?

  • status_map(CLARABEL): Converts status returned by CLARABEL solver to its respective CVXPY status.

  • name(CLARABEL): Returns the name of the solver

  • import_solver(CLARABEL): Imports the solver

  • reduction_format_constr(CLARABEL): Return a linear operator to multiply by PSD constraint coefficients.

  • perform(object = CLARABEL, problem = Problem): Returns a new problem and data for inverting the new solution

  • invert(object = CLARABEL, solution = list, inverse_data = list): Returns the solution to the original problem given the inverse_data.

  • solve_via_data(CLARABEL): Solve a problem represented by data returned from apply.


Utility method for formatting a ConeDims instance into a dictionary that can be supplied to Clarabel

Description

Utility method for formatting a ConeDims instance into a dictionary that can be supplied to Clarabel

Usage

CLARABEL.dims_to_solver_dict(cone_dims)

Arguments

cone_dims

A ConeDims instance.

Value

The dimensions of the cones.


Extracts the dual value for constraint starting at offset.

Description

Special cases PSD constraints, as per the CLARABEL specification.

Usage

CLARABEL.extract_dual_value(result_vec, offset, constraint)

Arguments

result_vec

The vector to extract dual values from.

offset

The starting point of the vector to extract from.

constraint

A Constraint object.

Value

The dual values for the corresponding PSD constraints


Complex Numbers

Description

Basic atoms that support complex arithmetic.

Usage

## S4 method for signature 'Expression'
Re(z)

## S4 method for signature 'Expression'
Im(z)

## S4 method for signature 'Expression'
Conj(z)

Arguments

z

An Expression object.

Value

An Expression object that represents the real, imaginary, or complex conjugate.


Complex Properties

Description

Determine if an expression is real, imaginary, or complex.

Usage

is_real(object)

is_imag(object)

is_complex(object)

Arguments

object

An Expression object.

Value

A logical value.


Lifts complex numbers to a real representation.

Description

This reduction takes in a complex problem and returns an equivalent real problem.

Usage

## S4 method for signature 'Complex2Real,Problem'
accepts(object, problem)

## S4 method for signature 'Complex2Real,Problem'
perform(object, problem)

## S4 method for signature 'Complex2Real,Solution,InverseData'
invert(object, solution, inverse_data)

Arguments

object

A Complex2Real object.

problem

A Problem object.

solution

A Solution object to invert.

inverse_data

A InverseData object containing data necessary for the inversion.

Methods (by generic)

  • accepts(object = Complex2Real, problem = Problem): Checks whether or not the problem involves any complex numbers.

  • perform(object = Complex2Real, problem = Problem): Converts a Complex problem into a Real one.

  • invert(object = Complex2Real, solution = Solution, inverse_data = InverseData): Returns a solution to the original problem given the inverse data.


Complex canonicalizer for the absolute value atom

Description

Complex canonicalizer for the absolute value atom

Usage

Complex2Real.abs_canon(expr, real_args, imag_args, real2imag)

Arguments

expr

An Expression object

real_args

A list of Constraint objects for the real part of the expression

imag_args

A list of Constraint objects for the imaginary part of the expression

real2imag

A list mapping the ID of the real part of a complex expression to the ID of its imaginary part.

Value

A canonicalization of the absolute value atom of a complex expression, where the returned variables are its real and imaginary components parsed out.


Helper function to sum arguments.

Description

Helper function to sum arguments.

Usage

Complex2Real.add(lh_arg, rh_arg, neg = FALSE)

Arguments

lh_arg

The arguments for the left-hand side

rh_arg

The arguments for the right-hand side

neg

Whether to negate the right hand side


Upcast 0D and 1D to 2D.

Description

Upcast 0D and 1D to 2D.

Usage

Complex2Real.at_least_2D(expr)

Arguments

expr

An Expression object

Value

An expression of dimension at least 2.


Complex canonicalizer for the binary atom

Description

Complex canonicalizer for the binary atom

Usage

Complex2Real.binary_canon(expr, real_args, imag_args, real2imag)

Arguments

expr

An Expression object

real_args

A list of Constraint objects for the real part of the expression

imag_args

A list of Constraint objects for the imaginary part of the expression

real2imag

A list mapping the ID of the real part of a complex expression to the ID of its imaginary part.

Value

A canonicalization of a binary atom, where the returned variables are the real component and the imaginary component.


Canonicalizes a Complex Expression

Description

Canonicalizes a Complex Expression

Usage

Complex2Real.canonicalize_expr(expr, real_args, imag_args, real2imag, leaf_map)

Arguments

expr

An Expression object.

real_args

A list of Constraint objects for the real part of the expression.

imag_args

A list of Constraint objects for the imaginary part of the expression.

real2imag

A list mapping the ID of the real part of a complex expression to the ID of its imaginary part.

leaf_map

A map that consists of a tree representation of the overall expression

Value

A list of the parsed out real and imaginary components of the expression at hand.


Recursively Canonicalizes a Complex Expression.

Description

Recursively Canonicalizes a Complex Expression.

Usage

Complex2Real.canonicalize_tree(expr, real2imag, leaf_map)

Arguments

expr

An Expression object.

real2imag

A list mapping the ID of the real part of a complex expression to the ID of its imaginary part.

leaf_map

A map that consists of a tree representation of the expression.

Value

A list of the parsed out real and imaginary components of the expression that was constructed by performing the canonicalization of each leaf in the tree.


Complex canonicalizer for the conjugate atom

Description

Complex canonicalizer for the conjugate atom

Usage

Complex2Real.conj_canon(expr, real_args, imag_args, real2imag)

Arguments

expr

An Expression object

real_args

A list of Constraint objects for the real part of the expression

imag_args

A list of Constraint objects for the imaginary part of the expression

real2imag

A list mapping the ID of the real part of a complex expression to the ID of its imaginary part.

Value

A canonicalization of a conjugate atom, where the returned variables are the real components and negative of the imaginary component.


Complex canonicalizer for the constant atom

Description

Complex canonicalizer for the constant atom

Usage

Complex2Real.constant_canon(expr, real_args, imag_args, real2imag)

Arguments

expr

An Expression object

real_args

A list of Constraint objects for the real part of the expression

imag_args

A list of Constraint objects for the imaginary part of the expression

real2imag

A list mapping the ID of the real part of a complex expression to the ID of its imaginary part.

Value

A canonicalization of a constant atom, where the returned variables are the real component and the imaginary component in the Constant atom.


Complex canonicalizer for the hermitian atom

Description

Complex canonicalizer for the hermitian atom

Usage

Complex2Real.hermitian_canon(expr, real_args, imag_args, real2imag)

Arguments

expr

An Expression object

real_args

A list of Constraint objects for the real part of the expression

imag_args

A list of Constraint objects for the imaginary part of the expression

real2imag

A list mapping the ID of the real part of a complex expression to the ID of its imaginary part.

Value

A canonicalization of a hermitian matrix atom, where the returned variables are the real component and the imaginary component.


Complex canonicalizer for the imaginary atom

Description

Complex canonicalizer for the imaginary atom

Usage

Complex2Real.imag_canon(expr, real_args, imag_args, real2imag)

Arguments

expr

An Expression object

real_args

A list of Constraint objects for the real part of the expression

imag_args

A list of Constraint objects for the imaginary part of the expression

real2imag

A list mapping the ID of the real part of a complex expression to the ID of its imaginary part.

Value

A canonicalization of an imaginary atom, where the returned variables are the imaginary component and NULL for the real component.


Helper function to combine arguments.

Description

Helper function to combine arguments.

Usage

Complex2Real.join(expr, lh_arg, rh_arg)

Arguments

expr

An Expression object

lh_arg

The arguments for the left-hand side

rh_arg

The arguments for the right-hand side

Value

A joined expression of both left and right expressions


Complex canonicalizer for the largest sum atom

Description

Complex canonicalizer for the largest sum atom

Usage

Complex2Real.lambda_sum_largest_canon(expr, real_args, imag_args, real2imag)

Arguments

expr

An Expression object

real_args

A list of Constraint objects for the real part of the expression

imag_args

A list of Constraint objects for the imaginary part of the expression

real2imag

A list mapping the ID of the real part of a complex expression to the ID of its imaginary part.

Value

A canonicalization of the largest sum atom, where the returned variables are the real component and the imaginary component.


Complex canonicalizer for the matrix fraction atom

Description

Complex canonicalizer for the matrix fraction atom

Usage

Complex2Real.matrix_frac_canon(expr, real_args, imag_args, real2imag)

Arguments

expr

An Expression object

real_args

A list of Constraint objects for the real part of the expression

imag_args

A list of Constraint objects for the imaginary part of the expression

real2imag

A list mapping the ID of the real part of a complex expression to the ID of its imaginary part.

Value

A canonicalization of a matrix atom, where the returned variables are converted to real variables.


Complex canonicalizer for the non-positive atom

Description

Complex canonicalizer for the non-positive atom

Usage

Complex2Real.nonpos_canon(expr, real_args, imag_args, real2imag)

Arguments

expr

An Expression object

real_args

A list of Constraint objects for the real part of the expression

imag_args

A list of Constraint objects for the imaginary part of the expression

real2imag

A list mapping the ID of the real part of a complex expression to the ID of its imaginary part.

Value

A canonicalization of a non positive atom, where the returned variables are the real component and the imaginary component.


Complex canonicalizer for the nuclear norm atom

Description

Complex canonicalizer for the nuclear norm atom

Usage

Complex2Real.norm_nuc_canon(expr, real_args, imag_args, real2imag)

Arguments

expr

An Expression object

real_args

A list of Constraint objects for the real part of the expression

imag_args

A list of Constraint objects for the imaginary part of the expression

real2imag

A list mapping the ID of the real part of a complex expression to the ID of its imaginary part.

Value

A canonicalization of a nuclear norm matrix atom, where the returned variables are the real component and the imaginary component.


Complex canonicalizer for the parameter matrix atom

Description

Complex canonicalizer for the parameter matrix atom

Usage

Complex2Real.param_canon(expr, real_args, imag_args, real2imag)

Arguments

expr

An Expression object

real_args

A list of Constraint objects for the real part of the expression

imag_args

A list of Constraint objects for the imaginary part of the expression

real2imag

A list mapping the ID of the real part of a complex expression to the ID of its imaginary part.

Value

A canonicalization of a parameter matrix atom, where the returned variables are the real component and the imaginary component.


Complex canonicalizer for the p norm atom

Description

Complex canonicalizer for the p norm atom

Usage

Complex2Real.pnorm_canon(expr, real_args, imag_args, real2imag)

Arguments

expr

An Expression object

real_args

A list of Constraint objects for the real part of the expression

imag_args

A list of Constraint objects for the imaginary part of the expression

real2imag

A list mapping the ID of the real part of a complex expression to the ID of its imaginary part.

Value

A canonicalization of a pnorm atom, where the returned variables are the real component and the NULL imaginary component.


Complex canonicalizer for the positive semidefinite atom

Description

Complex canonicalizer for the positive semidefinite atom

Usage

Complex2Real.psd_canon(expr, real_args, imag_args, real2imag)

Arguments

expr

An Expression object

real_args

A list of Constraint objects for the real part of the expression

imag_args

A list of Constraint objects for the imaginary part of the expression

real2imag

A list mapping the ID of the real part of a complex expression to the ID of its imaginary part.

Value

A canonicalization of a positive semidefinite atom, where the returned variables are the real component and the NULL imaginary component.


Complex canonicalizer for the quadratic atom

Description

Complex canonicalizer for the quadratic atom

Usage

Complex2Real.quad_canon(expr, real_args, imag_args, real2imag)

Arguments

expr

An Expression object

real_args

A list of Constraint objects for the real part of the expression

imag_args

A list of Constraint objects for the imaginary part of the expression

real2imag

A list mapping the ID of the real part of a complex expression to the ID of its imaginary part.

Value

A canonicalization of a quadratic atom, where the returned variables are the real component and the imaginary component as NULL.


Complex canonicalizer for the quadratic over linear term atom

Description

Complex canonicalizer for the quadratic over linear term atom

Usage

Complex2Real.quad_over_lin_canon(expr, real_args, imag_args, real2imag)

Arguments

expr

An Expression object

real_args

A list of Constraint objects for the real part of the expression

imag_args

A list of Constraint objects for the imaginary part of the expression

real2imag

A list mapping the ID of the real part of a complex expression to the ID of its imaginary part.

Value

A canonicalization of a quadratic over a linear term atom, where the returned variables are the real component and the imaginary component.


Complex canonicalizer for the real atom

Description

Complex canonicalizer for the real atom

Usage

Complex2Real.real_canon(expr, real_args, imag_args, real2imag)

Arguments

expr

An Expression object

real_args

A list of Constraint objects for the real part of the expression

imag_args

A list of Constraint objects for the imaginary part of the expression

real2imag

A list mapping the ID of the real part of a complex expression to the ID of its imaginary part.

Value

A canonicalization of a real atom, where the returned variables are the real component and NULL for the imaginary component.


Complex canonicalizer for the separable atom

Description

Complex canonicalizer for the separable atom

Usage

Complex2Real.separable_canon(expr, real_args, imag_args, real2imag)

Arguments

expr

An Expression object

real_args

A list of Constraint objects for the real part of the expression

imag_args

A list of Constraint objects for the imaginary part of the expression

real2imag

A list mapping the ID of the real part of a complex expression to the ID of its imaginary part.

Value

A canonicalization of a separable atom, where the returned variables are its real and imaginary components parsed out.


Complex canonicalizer for the SOC atom

Description

Complex canonicalizer for the SOC atom

Usage

Complex2Real.soc_canon(expr, real_args, imag_args, real2imag)

Arguments

expr

An Expression object

real_args

A list of Constraint objects for the real part of the expression

imag_args

A list of Constraint objects for the imaginary part of the expression

real2imag

A list mapping the ID of the real part of a complex expression to the ID of its imaginary part.

Value

A canonicalization of a SOC atom, where the returned variables are the real component and the NULL imaginary component.


Complex canonicalizer for the variable atom

Description

Complex canonicalizer for the variable atom

Usage

Complex2Real.variable_canon(expr, real_args, imag_args, real2imag)

Arguments

expr

An Expression object

real_args

A list of Constraint objects for the real part of the expression

imag_args

A list of Constraint objects for the imaginary part of the expression

real2imag

A list mapping the ID of the real part of a complex expression to the ID of its imaginary part.

Value

A canonicalization of a variable atom, where the returned variables are the real component and the NULL imaginary component.


Complex canonicalizer for the zero atom

Description

Complex canonicalizer for the zero atom

Usage

Complex2Real.zero_canon(expr, real_args, imag_args, real2imag)

Arguments

expr

An Expression object

real_args

A list of Constraint objects for the real part of the expression

imag_args

A list of Constraint objects for the imaginary part of the expression

real2imag

A list mapping the ID of the real part of a complex expression to the ID of its imaginary part.

Value

A canonicalization of a zero atom, where the returned variables are the real component and the imaginary component.


Second-Order Cone Methods

Description

The number of elementwise cones or a list of the sizes of the elementwise cones.

Usage

num_cones(object)

cone_sizes(object)

Arguments

object

An SOCAxis object.

Value

The number of cones, or the size of a cone.


Summary of cone dimensions present in constraints.

Description

Constraints must be formatted as dictionary that maps from constraint type to a list of constraints of that type.

Details

Attributes ———- zero : int The dimension of the zero cone. nonpos : int The dimension of the non-positive cone. exp : int The dimension of the exponential cone. soc : list of int A list of the second-order cone dimensions. psd : list of int A list of the positive semidefinite cone dimensions, where the dimension of the PSD cone of k by k matrices is k.


Construct Matrices for Linear Cone Problems

Description

Linear cone problems are assumed to have a linear objective and cone constraints, which may have zero or more arguments, all of which must be affine.

Usage

## S4 method for signature 'ConeMatrixStuffing,Problem'
accepts(object, problem)

## S4 method for signature 'ConeMatrixStuffing,Problem,CoeffExtractor'
stuffed_objective(object, problem, extractor)

Arguments

object

A ConeMatrixStuffing object.

problem

A Problem object.

extractor

Used to extract the affine coefficients of the objective.

Details

minimize c^Tx subject to cone_constr1(A_1*x + b_1, ...) ... cone_constrK(A_K*x + b_K, ...)

Methods (by generic)

  • accepts(object = ConeMatrixStuffing, problem = Problem): Is the solver accepted?

  • stuffed_objective( object = ConeMatrixStuffing, problem = Problem, extractor = CoeffExtractor ): Returns a list of the stuffed matrices


The ConicSolver class.

Description

Conic solver class with reduction semantics.

Usage

## S4 method for signature 'ConicSolver,Problem'
accepts(object, problem)

## S4 method for signature 'ConicSolver'
reduction_format_constr(object, problem, constr, exp_cone_order)

## S4 method for signature 'ConicSolver'
group_coeff_offset(object, problem, constraints, exp_cone_order)

## S4 method for signature 'ConicSolver,Solution,InverseData'
invert(object, solution, inverse_data)

Arguments

object

A ConicSolver object.

problem

A Problem object.

constr

A Constraint to format.

exp_cone_order

A list indicating how the exponential cone arguments are ordered.

constraints

A list of Constraint objects.

solution

A Solution object to invert.

inverse_data

A InverseData object containing data necessary for the inversion.

Methods (by generic)

  • accepts(object = ConicSolver, problem = Problem): Can the problem be solved with a conic solver?

  • reduction_format_constr(ConicSolver): Return a list representing a cone program whose problem data tensors will yield the coefficient "A" and offset "b" for the respective constraints: Linear Equations: Ax=bA x = b, Linear inequalities: AxbA x \leq b, Second order cone: AxSOCbA x \leq_{SOC} b, Exponential cone: AxEXPbA x \leq_{EXP} b, Semidefinite cone: AxSOPbA x \leq_{SOP} b.

  • group_coeff_offset(ConicSolver): Combine the constraints into a single matrix, offset.

  • invert(object = ConicSolver, solution = Solution, inverse_data = InverseData): Returns the solution to the original problem given the inverse_data.


Return the coefficient and offset in Ax+bAx + b.

Description

Return the coefficient and offset in Ax+bAx + b.

Usage

ConicSolver.get_coeff_offset(expr)

Arguments

expr

An Expression object.

Value

The coefficient and offset in Ax+bAx + b.


Returns a sparse matrix that spaces out an expression.

Description

Returns a sparse matrix that spaces out an expression.

Usage

ConicSolver.get_spacing_matrix(dim, spacing, offset)

Arguments

dim

A vector outlining the dimensions of the matrix.

spacing

An int of the number of rows between the start of each non-zero block.

offset

An int of the number of zeros at the beginning of the matrix.

Value

A sparse matrix that spaces out an expression


The Conjugate class.

Description

This class represents the complex conjugate of an expression.

Usage

Conjugate(expr)

## S4 method for signature 'Conjugate'
to_numeric(object, values)

## S4 method for signature 'Conjugate'
dim_from_args(object)

## S4 method for signature 'Conjugate'
is_incr(object, idx)

## S4 method for signature 'Conjugate'
is_decr(object, idx)

## S4 method for signature 'Conjugate'
is_symmetric(object)

## S4 method for signature 'Conjugate'
is_hermitian(object)

Arguments

expr

An Expression or R numeric data.

object

A Conjugate object.

values

A list of arguments to the atom.

idx

An index into the atom.

Methods (by generic)

  • to_numeric(Conjugate): Elementwise complex conjugate of the constant.

  • dim_from_args(Conjugate): The (row, col) dimensions of the expression.

  • is_incr(Conjugate): Is the composition weakly increasing in argument idx?

  • is_decr(Conjugate): Is the composition weakly decreasing in argument idx?

  • is_symmetric(Conjugate): Is the expression symmetric?

  • is_hermitian(Conjugate): Is the expression hermitian?

Slots

expr

An Expression or R numeric data.


The Constant class.

Description

This class represents a constant.

Coerce an R object or expression into the Constant class.

Usage

Constant(value)

## S4 method for signature 'Constant'
show(object)

## S4 method for signature 'Constant'
name(x)

## S4 method for signature 'Constant'
constants(object)

## S4 method for signature 'Constant'
value(object)

## S4 method for signature 'Constant'
is_pos(object)

## S4 method for signature 'Constant'
grad(object)

## S4 method for signature 'Constant'
dim(x)

## S4 method for signature 'Constant'
canonicalize(object)

## S4 method for signature 'Constant'
is_nonneg(object)

## S4 method for signature 'Constant'
is_nonpos(object)

## S4 method for signature 'Constant'
is_imag(object)

## S4 method for signature 'Constant'
is_complex(object)

## S4 method for signature 'Constant'
is_symmetric(object)

## S4 method for signature 'Constant'
is_hermitian(object)

## S4 method for signature 'Constant'
is_psd(object)

## S4 method for signature 'Constant'
is_nsd(object)

as.Constant(expr)

Arguments

value

A numeric element, vector, matrix, or data.frame. Vectors are automatically cast into a matrix column.

x, object

A Constant object.

expr

An Expression, numeric element, vector, matrix, or data.frame.

Value

A Constant representing the input as a constant.

Methods (by generic)

  • name(Constant): The name of the constant.

  • constants(Constant): Returns itself as a constant.

  • value(Constant): The value of the constant.

  • is_pos(Constant): A logical value indicating whether all elements of the constant are positive.

  • grad(Constant): An empty list since the gradient of a constant is zero.

  • dim(Constant): The c(row, col) dimensions of the constant.

  • canonicalize(Constant): The canonical form of the constant.

  • is_nonneg(Constant): A logical value indicating whether all elements of the constant are non-negative.

  • is_nonpos(Constant): A logical value indicating whether all elements of the constant are non-positive.

  • is_imag(Constant): A logical value indicating whether the constant is imaginary.

  • is_complex(Constant): A logical value indicating whether the constant is complex-valued.

  • is_symmetric(Constant): A logical value indicating whether the constant is symmetric.

  • is_hermitian(Constant): A logical value indicating whether the constant is a Hermitian matrix.

  • is_psd(Constant): A logical value indicating whether the constant is a positive semidefinite matrix.

  • is_nsd(Constant): A logical value indicating whether the constant is a negative semidefinite matrix.

Slots

value

A numeric element, vector, matrix, or data.frame. Vectors are automatically cast into a matrix column.

sparse

(Internal) A logical value indicating whether the value is a sparse matrix.

is_pos

(Internal) A logical value indicating whether all elements are non-negative.

is_neg

(Internal) A logical value indicating whether all elements are non-positive.

Examples

x <- Constant(5)
y <- Constant(diag(3))
get_data(y)
value(y)
is_nonneg(y)
size(y)
as.Constant(y)

The ConstantSolver class.

Description

The ConstantSolver class.

Usage

## S4 method for signature 'ConstantSolver'
mip_capable(solver)

## S4 method for signature 'ConstantSolver,Problem'
accepts(object, problem)

## S4 method for signature 'ConstantSolver,Problem'
perform(object, problem)

## S4 method for signature 'ConstantSolver,Solution,list'
invert(object, solution, inverse_data)

## S4 method for signature 'ConstantSolver'
name(x)

## S4 method for signature 'ConstantSolver'
import_solver(solver)

## S4 method for signature 'ConstantSolver'
is_installed(solver)

## S4 method for signature 'ConstantSolver'
solve_via_data(
  object,
  data,
  warm_start,
  verbose,
  feastol,
  reltol,
  abstol,
  num_iter,
  solver_opts,
  solver_cache
)

## S4 method for signature 'ConstantSolver,ANY'
reduction_solve(object, problem, warm_start, verbose, solver_opts)

Arguments

solver, object, x

A ConstantSolver object.

problem

A Problem object.

solution

A Solution object to invert.

inverse_data

A list containing data necessary for the inversion.

data

Data for the solver.

warm_start

A boolean of whether to warm start the solver.

verbose

A boolean of whether to enable solver verbosity.

feastol

The feasible tolerance.

reltol

The relative tolerance.

abstol

The absolute tolerance.

num_iter

The maximum number of iterations.

solver_opts

A list of Solver specific options

solver_cache

Cache for the solver.

Methods (by generic)

  • mip_capable(ConstantSolver): Can the solver handle mixed-integer programs?

  • accepts(object = ConstantSolver, problem = Problem): Is the solver capable of solving the problem?

  • perform(object = ConstantSolver, problem = Problem): Returns a list of the ConstantSolver, Problem, and an empty list.

  • invert(object = ConstantSolver, solution = Solution, inverse_data = list): Returns the solution.

  • name(ConstantSolver): Returns the name of the solver.

  • import_solver(ConstantSolver): Imports the solver.

  • is_installed(ConstantSolver): Is the solver installed?

  • solve_via_data(ConstantSolver): Solve a problem represented by data returned from apply.

  • reduction_solve(object = ConstantSolver, problem = ANY): Solve the problem and return a Solution object.


Is Constraint Violated?

Description

Checks whether the constraint violation is less than a tolerance.

Usage

constr_value(object, tolerance = 1e-08)

Arguments

object

A Constraint object.

tolerance

A numeric scalar representing the absolute tolerance to impose on the violation.

Value

A logical value indicating whether the violation is less than the tolerance. Raises an error if the residual is NA.


The Constraint class.

Description

This virtual class represents a mathematical constraint.

Usage

## S4 method for signature 'Constraint'
as.character(x)

## S4 method for signature 'Constraint'
dim(x)

## S4 method for signature 'Constraint'
size(object)

## S4 method for signature 'Constraint'
is_real(object)

## S4 method for signature 'Constraint'
is_imag(object)

## S4 method for signature 'Constraint'
is_complex(object)

## S4 method for signature 'Constraint'
is_dcp(object)

## S4 method for signature 'Constraint'
is_dgp(object)

## S4 method for signature 'Constraint'
residual(object)

## S4 method for signature 'Constraint'
violation(object)

## S4 method for signature 'Constraint'
constr_value(object, tolerance = 1e-08)

## S4 method for signature 'Constraint'
get_data(object)

## S4 method for signature 'Constraint'
dual_value(object)

## S4 replacement method for signature 'Constraint'
dual_value(object) <- value

## S4 method for signature 'ZeroConstraint'
size(object)

Arguments

x, object

A Constraint object.

tolerance

The tolerance for checking if the constraint is violated.

value

A numeric scalar, vector, or matrix.

Methods (by generic)

  • dim(Constraint): The dimensions of the constrained expression.

  • size(Constraint): The size of the constrained expression.

  • is_real(Constraint): Is the constraint real?

  • is_imag(Constraint): Is the constraint imaginary?

  • is_complex(Constraint): Is the constraint complex?

  • is_dcp(Constraint): Is the constraint DCP?

  • is_dgp(Constraint): Is the constraint DGP?

  • residual(Constraint): The residual of a constraint

  • violation(Constraint): The violation of a constraint.

  • constr_value(Constraint): The value of a constraint.

  • get_data(Constraint): Information needed to reconstruct the object aside from the args.

  • dual_value(Constraint): The dual values of a constraint.

  • dual_value(Constraint) <- value: Replaces the dual values of a constraint..

  • size(ZeroConstraint): The size of the constrained expression.


Builds a chain that rewrites a problem into an intermediate representation suitable for numeric reductions.

Description

Builds a chain that rewrites a problem into an intermediate representation suitable for numeric reductions.

Usage

## S4 method for signature 'Problem,list'
construct_intermediate_chain(problem, candidates, gp = FALSE)

Arguments

problem

The problem for which to build a chain.

candidates

A list of candidate solvers.

gp

A logical value indicating whether the problem is a geometric program.

Value

A Chain object that can be used to convert the problem to an intermediate form.


Build a reduction chain from a problem to an installed solver.

Description

Build a reduction chain from a problem to an installed solver.

Usage

construct_solving_chain(problem, candidates)

Arguments

problem

The problem for which to build a chain.

candidates

A list of candidate solvers.

Value

A SolvingChain that can be used to solve the problem.


Discrete Convolution

Description

The 1-D discrete convolution of two vectors.

Usage

conv(lh_exp, rh_exp)

Arguments

lh_exp

An Expression or vector representing the left-hand value.

rh_exp

An Expression or vector representing the right-hand value.

Value

An Expression representing the convolution of the input.

Examples

set.seed(129)
x <- Variable(5)
h <- matrix(stats::rnorm(2), nrow = 2, ncol = 1)
prob <- Problem(Minimize(sum(conv(h, x))))
result <- solve(prob)
result$value
result$getValue(x)

The Conv class.

Description

This class represents the 1-D discrete convolution of two vectors.

Usage

Conv(lh_exp, rh_exp)

## S4 method for signature 'Conv'
to_numeric(object, values)

## S4 method for signature 'Conv'
validate_args(object)

## S4 method for signature 'Conv'
dim_from_args(object)

## S4 method for signature 'Conv'
sign_from_args(object)

## S4 method for signature 'Conv'
is_incr(object, idx)

## S4 method for signature 'Conv'
is_decr(object, idx)

## S4 method for signature 'Conv'
graph_implementation(object, arg_objs, dim, data = NA_real_)

Arguments

lh_exp

An Expression or R numeric data representing the left-hand vector.

rh_exp

An Expression or R numeric data representing the right-hand vector.

object

A Conv object.

values

A list of arguments to the atom.

idx

An index into the atom.

arg_objs

A list of linear expressions for each argument.

dim

A vector representing the dimensions of the resulting expression.

data

A list of additional data required by the atom.

Methods (by generic)

  • to_numeric(Conv): The convolution of the two values.

  • validate_args(Conv): Check both arguments are vectors and the first is a constant.

  • dim_from_args(Conv): The dimensions of the atom.

  • sign_from_args(Conv): The sign of the atom.

  • is_incr(Conv): Is the left-hand expression positive?

  • is_decr(Conv): Is the left-hand expression negative?

  • graph_implementation(Conv): The graph implementation of the atom.

Slots

lh_exp

An Expression or R numeric data representing the left-hand vector.

rh_exp

An Expression or R numeric data representing the right-hand vector.


An interface for the CPLEX solver

Description

An interface for the CPLEX solver

Usage

CPLEX_CONIC()

CPLEX_CONIC()

## S4 method for signature 'CPLEX_CONIC'
mip_capable(solver)

## S4 method for signature 'CPLEX_CONIC'
name(x)

## S4 method for signature 'CPLEX_CONIC'
import_solver(solver)

## S4 method for signature 'CPLEX_CONIC,Problem'
accepts(object, problem)

## S4 method for signature 'CPLEX_CONIC'
status_map(solver, status)

## S4 method for signature 'CPLEX_CONIC,Problem'
perform(object, problem)

## S4 method for signature 'CPLEX_CONIC,list,list'
invert(object, solution, inverse_data)

## S4 method for signature 'CPLEX_CONIC'
solve_via_data(
  object,
  data,
  warm_start,
  verbose,
  feastol,
  reltol,
  abstol,
  num_iter,
  solver_opts,
  solver_cache
)

Arguments

solver, object, x

A CPLEX_CONIC object.

problem

A Problem object.

status

A status code returned by the solver.

solution

The raw solution returned by the solver.

inverse_data

A list containing data necessary for the inversion.

data

Data generated via an apply call.

warm_start

A boolean of whether to warm start the solver.

verbose

A boolean of whether to enable solver verbosity.

feastol

The feasible tolerance on the primal and dual residual.

reltol

The relative tolerance on the duality gap.

abstol

The absolute tolerance on the duality gap.

num_iter

The maximum number of iterations.

solver_opts

A list of Solver specific options

solver_cache

Cache for the solver.

Methods (by generic)

  • mip_capable(CPLEX_CONIC): Can the solver handle mixed-integer programs?

  • name(CPLEX_CONIC): Returns the name of the solver.

  • import_solver(CPLEX_CONIC): Imports the solver.

  • accepts(object = CPLEX_CONIC, problem = Problem): Can CPLEX solve the problem?

  • status_map(CPLEX_CONIC): Converts status returned by the CPLEX solver to its respective CVXPY status.

  • perform(object = CPLEX_CONIC, problem = Problem): Returns a new problem and data for inverting the new solution.

  • invert(object = CPLEX_CONIC, solution = list, inverse_data = list): Returns the solution to the original problem given the inverse_data.

  • solve_via_data(CPLEX_CONIC): Solve a problem represented by data returned from apply.


An interface for the CPLEX solver.

Description

An interface for the CPLEX solver.

Usage

CPLEX_QP()

## S4 method for signature 'CPLEX_QP'
mip_capable(solver)

## S4 method for signature 'CPLEX_QP'
status_map(solver, status)

## S4 method for signature 'CPLEX_QP'
name(x)

## S4 method for signature 'CPLEX_QP'
import_solver(solver)

## S4 method for signature 'CPLEX_QP,list,InverseData'
invert(object, solution, inverse_data)

## S4 method for signature 'CPLEX_QP'
solve_via_data(
  object,
  data,
  warm_start,
  verbose,
  feastol,
  reltol,
  abstol,
  num_iter,
  solver_opts,
  solver_cache
)

Arguments

status

A status code returned by the solver.

x, object, solver

A CPLEX_QP object.

solution

The raw solution returned by the solver.

inverse_data

A InverseData object containing data necessary for the inversion.

data

Data generated via an apply call.

warm_start

A boolean of whether to warm start the solver.

verbose

A boolean of whether to enable solver verbosity.

feastol

The feasible tolerance on the primal and dual residual.

reltol

The relative tolerance on the duality gap.

abstol

The absolute tolerance on the duality gap.

num_iter

The maximum number of iterations.

solver_opts

A list of Solver specific options

solver_cache

Cache for the solver.

Methods (by generic)

  • mip_capable(CPLEX_QP): Can the solver handle mixed-integer programs?

  • status_map(CPLEX_QP): Converts status returned by the CPLEX solver to its respective CVXPY status.

  • name(CPLEX_QP): Returns the name of the solver.

  • import_solver(CPLEX_QP): Imports the solver.

  • invert(object = CPLEX_QP, solution = list, inverse_data = InverseData): Returns the solution to the original problem given the inverse_data.

  • solve_via_data(CPLEX_QP): Solve a problem represented by data returned from apply.


Cumulative Maximum

Description

The cumulative maximum, maxi=1,,kxi\max_{i=1,\ldots,k} x_i for k=1,,nk=1,\ldots,n. When calling cummax, matrices are automatically flattened into column-major order before the max is taken.

Usage

cummax_axis(expr, axis = 2)

## S4 method for signature 'Expression'
cummax(x)

Arguments

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, and 2 indicates columns. The default is 2.

x, expr

An Expression, vector, or matrix.

Examples

val <- cbind(c(1,2), c(3,4))
value(cummax(Constant(val)))
value(cummax_axis(Constant(val)))

x <- Variable(2,2)
prob <- Problem(Minimize(cummax(x)[4]), list(x == val))
result <- solve(prob)
result$value
result$getValue(cummax(x))

The CumMax class.

Description

This class represents the cumulative maximum of an expression.

Usage

CumMax(expr, axis = 2)

## S4 method for signature 'CumMax'
to_numeric(object, values)

## S4 method for signature 'CumMax'
.grad(object, values)

## S4 method for signature 'CumMax'
.column_grad(object, value)

## S4 method for signature 'CumMax'
dim_from_args(object)

## S4 method for signature 'CumMax'
sign_from_args(object)

## S4 method for signature 'CumMax'
get_data(object)

## S4 method for signature 'CumMax'
is_atom_convex(object)

## S4 method for signature 'CumMax'
is_atom_concave(object)

## S4 method for signature 'CumMax'
is_incr(object, idx)

## S4 method for signature 'CumMax'
is_decr(object, idx)

Arguments

expr

An Expression.

axis

A numeric vector indicating the axes along which to apply the function. For a 2D matrix, 1 indicates rows, 2 indicates columns, and c(1,2) indicates rows and columns.

object

A CumMax object.

values

A list of numeric values for the arguments

value

A numeric value.

idx

An index into the atom.

Methods (by generic)

  • to_numeric(CumMax): The cumulative maximum along the axis.

  • .grad(CumMax): Gives the (sub/super)gradient of the atom w.r.t. each variable

  • .column_grad(CumMax): Gives the (sub/super)gradient of the atom w.r.t. each column variable

  • dim_from_args(CumMax): The dimensions of the atom determined from its arguments.

  • sign_from_args(CumMax): The (is positive, is negative) sign of the atom.

  • get_data(CumMax): Returns the axis along which the cumulative max is taken.

  • is_atom_convex(CumMax): Is the atom convex?

  • is_atom_concave(CumMax): Is the atom concave?

  • is_incr(CumMax): Is the atom weakly increasing in the index?

  • is_decr(CumMax): Is the atom weakly decreasing in the index?

Slots

expr

An Expression.

axis

A numeric vector indicating the axes along which to apply the function. For a 2D matrix, 1 indicates rows, 2 indicates columns, and c(1,2) indicates rows and columns.


Cumulative Sum

Description

The cumulative sum, i=1kxi\sum_{i=1}^k x_i for k=1,,nk=1,\ldots,n. When calling cumsum, matrices are automatically flattened into column-major order before the sum is taken.

Usage

cumsum_axis(expr, axis = 2)

## S4 method for signature 'Expression'
cumsum(x)

Arguments

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, and 2 indicates columns. The default is 2.

x, expr

An Expression, vector, or matrix.

Examples

val <- cbind(c(1,2), c(3,4))
value(cumsum(Constant(val)))
value(cumsum_axis(Constant(val)))

x <- Variable(2,2)
prob <- Problem(Minimize(cumsum(x)[4]), list(x == val))
result <- solve(prob)
result$value
result$getValue(cumsum(x))

The CumSum class.

Description

This class represents the cumulative sum.

Usage

CumSum(expr, axis = 2)

## S4 method for signature 'CumSum'
to_numeric(object, values)

## S4 method for signature 'CumSum'
dim_from_args(object)

## S4 method for signature 'CumSum'
get_data(object)

## S4 method for signature 'CumSum'
.grad(object, values)

## S4 method for signature 'CumSum'
graph_implementation(object, arg_objs, dim, data = NA_real_)

Arguments

expr

An Expression to be summed.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, and 2 indicates columns. The default is 2.

object

A CumSum object.

values

A list of numeric values for the arguments

arg_objs

A list of linear expressions for each argument.

dim

A vector representing the dimensions of the resulting expression.

data

A list of additional data required by the atom.

Methods (by generic)

  • to_numeric(CumSum): The cumulative sum of the values along the specified axis.

  • dim_from_args(CumSum): The dimensions of the atom.

  • get_data(CumSum): Returns the axis along which the cumulative sum is taken.

  • .grad(CumSum): Gives the (sub/super)gradient of the atom w.r.t. each variable

  • graph_implementation(CumSum): The graph implementation of the atom.

Slots

expr

An Expression to be summed.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, and 2 indicates columns. The default is 2.


Curvature of Expression

Description

The curvature of an expression.

The curvature of an expression.

Usage

curvature(object)

## S4 method for signature 'Expression'
curvature(object)

Arguments

object

An Expression object.

Value

A string indicating the curvature of the expression, either "CONSTANT", "AFFINE", "CONVEX, "CONCAVE", or "UNKNOWN".

A string indicating the curvature of the expression, either "CONSTANT", "AFFINE", "CONVEX", "CONCAVE", or "UNKNOWN".

Examples

x <- Variable()
c <- Constant(5)

curvature(c)
curvature(x)
curvature(x^2)
curvature(sqrt(x))
curvature(log(x^3) + sqrt(x))

Curvature of an Atom

Description

Determine if an atom is convex, concave, or affine.

Usage

is_atom_convex(object)

is_atom_concave(object)

is_atom_affine(object)

## S4 method for signature 'Atom'
is_atom_convex(object)

## S4 method for signature 'Atom'
is_atom_concave(object)

## S4 method for signature 'Atom'
is_atom_affine(object)

## S4 method for signature 'Atom'
is_atom_log_log_convex(object)

## S4 method for signature 'Atom'
is_atom_log_log_concave(object)

## S4 method for signature 'Atom'
is_atom_log_log_affine(object)

Arguments

object

A Atom object.

Value

A logical value.

Examples

x <- Variable()

is_atom_convex(x^2)
is_atom_convex(sqrt(x))
is_atom_convex(log(x))

is_atom_concave(-abs(x))
is_atom_concave(x^2)
is_atom_concave(sqrt(x))

is_atom_affine(2*x)
is_atom_affine(x^2)

Curvature of Composition

Description

Determine whether a composition is non-decreasing or non-increasing in an index.

Usage

is_incr(object, idx)

is_decr(object, idx)

## S4 method for signature 'Atom'
is_incr(object, idx)

## S4 method for signature 'Atom'
is_decr(object, idx)

Arguments

object

A Atom object.

idx

An index into the atom.

Value

A logical value.

Examples

x <- Variable()
is_incr(log(x), 1)
is_incr(x^2, 1)
is_decr(min(x), 1)
is_decr(abs(x), 1)

Curvature Properties

Description

Determine if an expression is constant, affine, convex, concave, quadratic, piecewise linear (pwl), or quadratic/piecewise affine (qpwa).

Usage

is_constant(object)

is_affine(object)

is_convex(object)

is_concave(object)

is_quadratic(object)

is_pwl(object)

is_qpwa(object)

Arguments

object

An Expression object.

Value

A logical value.

Examples

x <- Variable()
c <- Constant(5)

is_constant(c)
is_constant(x)

is_affine(c)
is_affine(x)
is_affine(x^2)

is_convex(c)
is_convex(x)
is_convex(x^2)
is_convex(sqrt(x))

is_concave(c)
is_concave(x)
is_concave(x^2)
is_concave(sqrt(x))

is_quadratic(x^2)
is_quadratic(sqrt(x))

is_pwl(c)
is_pwl(x)
is_pwl(x^2)

The CvxAttr2Constr class.

Description

This class represents a reduction that expands convex variable attributes into constraints.

Usage

## S4 method for signature 'CvxAttr2Constr,Problem'
perform(object, problem)

## S4 method for signature 'CvxAttr2Constr,Solution,list'
invert(object, solution, inverse_data)

Arguments

object

A CvxAttr2Constr object.

problem

A Problem object.

solution

A Solution to a problem that generated the inverse data.

inverse_data

The inverse data returned by an invocation to apply.

Methods (by generic)

  • perform(object = CvxAttr2Constr, problem = Problem): Expand convex variable attributes to constraints.

  • invert(object = CvxAttr2Constr, solution = Solution, inverse_data = list): Performs the reduction on a problem and returns an equivalent problem.


An interface for the CVXOPT solver.

Description

An interface for the CVXOPT solver.

Usage

## S4 method for signature 'CVXOPT'
mip_capable(solver)

## S4 method for signature 'CVXOPT'
status_map(solver, status)

## S4 method for signature 'CVXOPT'
name(x)

## S4 method for signature 'CVXOPT'
import_solver(solver)

## S4 method for signature 'CVXOPT,Problem'
accepts(object, problem)

## S4 method for signature 'CVXOPT,Problem'
perform(object, problem)

## S4 method for signature 'CVXOPT,list,list'
invert(object, solution, inverse_data)

## S4 method for signature 'CVXOPT'
solve_via_data(
  object,
  data,
  warm_start,
  verbose,
  feastol,
  reltol,
  abstol,
  num_iter,
  solver_opts,
  solver_cache
)

Arguments

solver, object, x

A CVXOPT object.

status

A status code returned by the solver.

problem

A Problem object.

solution

The raw solution returned by the solver.

inverse_data

A list containing data necessary for the inversion.

data

Data generated via an apply call.

warm_start

A boolean of whether to warm start the solver.

verbose

A boolean of whether to enable solver verbosity.

feastol

The feasible tolerance on the primal and dual residual.

reltol

The relative tolerance on the duality gap.

abstol

The absolute tolerance on the duality gap.

num_iter

The maximum number of iterations.

solver_opts

A list of Solver specific options

solver_cache

Cache for the solver.

Methods (by generic)

  • mip_capable(CVXOPT): Can the solver handle mixed-integer programs?

  • status_map(CVXOPT): Converts status returned by the CVXOPT solver to its respective CVXPY status.

  • name(CVXOPT): Returns the name of the solver.

  • import_solver(CVXOPT): Imports the solver.

  • accepts(object = CVXOPT, problem = Problem): Can CVXOPT solve the problem?

  • perform(object = CVXOPT, problem = Problem): Returns a new problem and data for inverting the new solution.

  • invert(object = CVXOPT, solution = list, inverse_data = list): Returns the solution to the original problem given the inverse_data.

  • solve_via_data(CVXOPT): Solve a problem represented by data returned from apply.


Matrix Norm (Alternative)

Description

A wrapper on the different norm atoms. This is different from the standard "norm" method in the R base package. If p = 2, axis = NA, and x is a matrix, this returns the maximium singular value.

Usage

cvxr_norm(x, p = 2, axis = NA_real_, keepdims = FALSE)

Arguments

x

An Expression or numeric constant representing a vector or matrix.

p

The type of norm. May be a number (p-norm), "inf" (infinity-norm), "nuc" (nuclear norm), or "fro" (Frobenius norm). The default is p = 2.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.

keepdims

(Optional) Should dimensions be maintained when applying the atom along an axis? If FALSE, result will be collapsed into an nx1n x 1 column vector. The default is FALSE.

Value

An Expression representing the norm.

See Also

norm


Reduce DCP Problem to Conic Form

Description

This reduction takes as input (minimization) DCP problems and converts them into problems with affine objectives and conic constraints whose arguments are affine.

Usage

## S4 method for signature 'Dcp2Cone,Problem'
accepts(object, problem)

## S4 method for signature 'Dcp2Cone,Problem'
perform(object, problem)

Arguments

object

A Dcp2Cone object.

problem

A Problem object.

Methods (by generic)

  • accepts(object = Dcp2Cone, problem = Problem): A problem is accepted if it is a minimization and is DCP.

  • perform(object = Dcp2Cone, problem = Problem): Converts a DCP problem to a conic form.


Dcp2Cone canonicalizer for the entropy atom

Description

Dcp2Cone canonicalizer for the entropy atom

Usage

Dcp2Cone.entr_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A cone program constructed from an entropy atom where the objective function is just the variable t with an ExpCone constraint.


Dcp2Cone canonicalizer for the exponential atom

Description

Dcp2Cone canonicalizer for the exponential atom

Usage

Dcp2Cone.exp_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A cone program constructed from an exponential atom where the objective function is the variable t with an ExpCone constraint.


Dcp2Cone canonicalizer for the geometric mean atom

Description

Dcp2Cone canonicalizer for the geometric mean atom

Usage

Dcp2Cone.geo_mean_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A cone program constructed from a geometric mean atom where the objective function is the variable t with geometric mean constraints


Dcp2Cone canonicalizer for the huber atom

Description

Dcp2Cone canonicalizer for the huber atom

Usage

Dcp2Cone.huber_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A cone program constructed from a huber atom where the objective function is the variable t with square and absolute constraints


Dcp2Cone canonicalizer for the indicator atom

Description

Dcp2Cone canonicalizer for the indicator atom

Usage

Dcp2Cone.indicator_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A cone program constructed from an indicator atom and where 0 is the objective function with the given constraints in the function.


Dcp2Cone canonicalizer for the KL Divergence atom

Description

Dcp2Cone canonicalizer for the KL Divergence atom

Usage

Dcp2Cone.kl_div_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A cone program constructed from a KL divergence atom where t is the objective function with the ExpCone constraints.


Dcp2Cone canonicalizer for the lambda maximization atom

Description

Dcp2Cone canonicalizer for the lambda maximization atom

Usage

Dcp2Cone.lambda_max_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A cone program constructed from a lambda maximization atom where t is the objective function and a PSD constraint and a constraint requiring I*t to be symmetric.


Dcp2Cone canonicalizer for the largest lambda sum atom

Description

Dcp2Cone canonicalizer for the largest lambda sum atom

Usage

Dcp2Cone.lambda_sum_largest_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A cone program constructed from a lambda sum of the k largest elements atom where k*t + trace(Z) is the objective function. t denotes the variable subject to constraints and Z is a PSD matrix variable whose dimensions consist of the length of the vector at hand. The constraints require the the diagonal matrix of the vector to be symmetric and PSD.


Dcp2Cone canonicalizer for the log atom

Description

Dcp2Cone canonicalizer for the log atom

Usage

Dcp2Cone.log_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A cone program constructed from a log atom where t is the objective function and the constraints consist of ExpCone constraints


Dcp2Cone canonicalizer for the log determinant atom

Description

Dcp2Cone canonicalizer for the log determinant atom

Usage

Dcp2Cone.log_det_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A cone program constructed from a log determinant atom where the objective function is the sum of the log of the vector D and the constraints consist of requiring the matrix Z to be diagonal and the diagonal Z to equal D, Z to be upper triangular and DZ; t(Z)A to be positive semidefinite, where A is a n by n matrix.


Dcp2Cone canonicalizer for the log sum of the exp atom

Description

Dcp2Cone canonicalizer for the log sum of the exp atom

Usage

Dcp2Cone.log_sum_exp_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A cone program constructed from the log sum of the exp atom where the objective is the t variable and the constraints consist of the ExpCone constraints and requiring t to be less than a matrix of ones of the same size.


Dcp2Cone canonicalizer for the log 1p atom

Description

Dcp2Cone canonicalizer for the log 1p atom

Usage

Dcp2Cone.log1p_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A cone program constructed from a log 1p atom where t is the objective function and the constraints consist of ExpCone constraints + 1.


Dcp2Cone canonicalizer for the logistic function atom

Description

Dcp2Cone canonicalizer for the logistic function atom

Usage

Dcp2Cone.logistic_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A cone program constructed from the logistic atom where the objective function is given by t0 and the constraints consist of the ExpCone constraints.


Dcp2Cone canonicalizer for the matrix fraction atom

Description

Dcp2Cone canonicalizer for the matrix fraction atom

Usage

Dcp2Cone.matrix_frac_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A cone program constructed from the matrix fraction atom, where the objective function is the trace of Tvar, a m by m matrix where the constraints consist of the matrix of the Schur complement of Tvar to consist of P, an n by n, given matrix, X, an n by m given matrix, and Tvar.


Dcp2Cone canonicalizer for the nuclear norm atom

Description

Dcp2Cone canonicalizer for the nuclear norm atom

Usage

Dcp2Cone.normNuc_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A cone program constructed from a nuclear norm atom, where the objective function consists of .5 times the trace of a matrix X of size m+n by m+n where the constraint consist of the top right corner of the matrix being the original matrix.


Dcp2Cone canonicalizer for the p norm atom

Description

Dcp2Cone canonicalizer for the p norm atom

Usage

Dcp2Cone.pnorm_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A cone program constructed from a pnorm atom, where the objective is a variable t of dimension of the original vector in the problem and the constraints consist of geometric mean constraints.


Dcp2Cone canonicalizer for the power atom

Description

Dcp2Cone canonicalizer for the power atom

Usage

Dcp2Cone.power_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A cone program constructed from a power atom, where the objective function consists of the variable t which is of the dimension of the original vector from the power atom and the constraints consists of geometric mean constraints.


Dcp2Cone canonicalizer for the quadratic form atom

Description

Dcp2Cone canonicalizer for the quadratic form atom

Usage

Dcp2Cone.quad_form_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A cone program constructed from a quadratic form atom, where the objective function consists of the scaled objective function from the quadratic over linear canonicalization and same with the constraints.


Dcp2Cone canonicalizer for the quadratic over linear term atom

Description

Dcp2Cone canonicalizer for the quadratic over linear term atom

Usage

Dcp2Cone.quad_over_lin_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A cone program constructed from a quadratic over linear term atom where the objective function consists of a one dimensional variable t with SOC constraints.


Dcp2Cone canonicalizer for the sigma max atom

Description

Dcp2Cone canonicalizer for the sigma max atom

Usage

Dcp2Cone.sigma_max_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A cone program constructed from a sigma max atom where the objective function consists of the variable t that is of the same dimension as the original expression with specified constraints in the function.


Reduce DGP problems to DCP problems.

Description

This reduction takes as input a DGP problem and returns an equivalent DCP problem. Because every (generalized) geometric program is a DGP problem, this reduction can be used to convert geometric programs into convex form.

Usage

## S4 method for signature 'Dgp2Dcp,Problem'
accepts(object, problem)

## S4 method for signature 'Dgp2Dcp,Problem'
perform(object, problem)

## S4 method for signature 'Dgp2Dcp'
canonicalize_expr(object, expr, args)

## S4 method for signature 'Dgp2Dcp,Solution,InverseData'
invert(object, solution, inverse_data)

Arguments

object

A Dgp2Dcp object.

problem

A Problem object.

expr

An Expression object corresponding to the DGP problem.

args

A list of values corresponding to the DGP expression

solution

A Solution object to invert.

inverse_data

A InverseData object containing data necessary for the inversion.

Methods (by generic)

  • accepts(object = Dgp2Dcp, problem = Problem): Is the problem DGP?

  • perform(object = Dgp2Dcp, problem = Problem): Converts the DGP problem to a DCP problem.

  • canonicalize_expr(Dgp2Dcp): Canonicalizes each atom within an Dgp2Dcp expression.

  • invert(object = Dgp2Dcp, solution = Solution, inverse_data = InverseData): Returns the solution to the original problem given the inverse_data.


Dgp2Dcp canonicalizer for the addition atom

Description

Dgp2Dcp canonicalizer for the addition atom

Usage

Dgp2Dcp.add_canon(expr, args)

Arguments

expr

An Expression object

args

A list of values for the expr variable

Value

A canonicalization of the addition atom of a DGP expression, where the returned expression is the transformed DCP equivalent.


Dgp2Dcp canonicalizer for the constant atom

Description

Dgp2Dcp canonicalizer for the constant atom

Usage

Dgp2Dcp.constant_canon(expr, args)

Arguments

expr

An Expression object

args

A list of values for the expr variable

Value

A canonicalization of the constant atom of a DGP expression, where the returned expression is the DCP equivalent resulting from the log of the expression.


Dgp2Dcp canonicalizer for the division atom

Description

Dgp2Dcp canonicalizer for the division atom

Usage

Dgp2Dcp.div_canon(expr, args)

Arguments

expr

An Expression object

args

A list of values for the expr variable

Value

A canonicalization of the division atom of a DGP expression, where the returned expression is the log transformed DCP equivalent.


Dgp2Dcp canonicalizer for the exp atom

Description

Dgp2Dcp canonicalizer for the exp atom

Usage

Dgp2Dcp.exp_canon(expr, args)

Arguments

expr

An Expression object

args

A list of values for the expr variable

Value

A canonicalization of the exp atom of a DGP expression, where the returned expression is the transformed DCP equivalent.


Dgp2Dcp canonicalizer for the (IX)1(I - X)^{-1} atom

Description

Dgp2Dcp canonicalizer for the (IX)1(I - X)^{-1} atom

Usage

Dgp2Dcp.eye_minus_inv_canon(expr, args)

Arguments

expr

An Expression object

args

A list of values for the expr variable

Value

A canonicalization of the (IX)1(I - X)^{-1} atom of a DGP expression, where the returned expression is the transformed DCP equivalent.


Dgp2Dcp canonicalizer for the geometric mean atom

Description

Dgp2Dcp canonicalizer for the geometric mean atom

Usage

Dgp2Dcp.geo_mean_canon(expr, args)

Arguments

expr

An Expression object

args

A list of values for the expr variable

Value

A canonicalization of the geometric mean atom of a DGP expression, where the returned expression is the transformed DCP equivalent.


Dgp2Dcp canonicalizer for the log atom

Description

Dgp2Dcp canonicalizer for the log atom

Usage

Dgp2Dcp.log_canon(expr, args)

Arguments

expr

An Expression object

args

A list of values for the expr variable

Value

A canonicalization of the log atom of a DGP expression, where the returned expression is the log of the original expression..


Dgp2Dcp canonicalizer for the multiplication atom

Description

Dgp2Dcp canonicalizer for the multiplication atom

Usage

Dgp2Dcp.mul_canon(expr, args)

Arguments

expr

An Expression object

args

A list of values for the expr variable

Value

A canonicalization of the multiplication atom of a DGP expression, where the returned expression is the transformed DCP equivalent.


Dgp2Dcp canonicalizer for the multiplication expression atom

Description

Dgp2Dcp canonicalizer for the multiplication expression atom

Usage

Dgp2Dcp.mulexpression_canon(expr, args)

Arguments

expr

An Expression object

args

A list of values for the expr variable

Value

A canonicalization of the multiplication expression atom of a DGP expression, where the returned expression is the transformed DCP equivalent.


Dgp2Dcp canonicalizer for the non-positive constraint atom

Description

Dgp2Dcp canonicalizer for the non-positive constraint atom

Usage

Dgp2Dcp.nonpos_constr_canon(expr, args)

Arguments

expr

An Expression object

args

A list of values for the expr variable

Value

A canonicalization of the non-positive contraint atom of a DGP expression, where the returned expression is the transformed DCP equivalent.


Dgp2Dcp canonicalizer for the infinite norm atom

Description

Dgp2Dcp canonicalizer for the infinite norm atom

Usage

Dgp2Dcp.norm_inf_canon(expr, args)

Arguments

expr

An Expression object

args

A list of values for the expr variable

Value

A canonicalization of the infinity norm atom of a DGP expression, where the returned expression is the transformed DCP equivalent.


Dgp2Dcp canonicalizer for the 1 norm atom

Description

Dgp2Dcp canonicalizer for the 1 norm atom

Usage

Dgp2Dcp.norm1_canon(expr, args)

Arguments

expr

An Expression object

args

A list of values for the expr variable

Value

A canonicalization of the norm1 atom of a DGP expression, where the returned expression is the transformed DCP equivalent.


Dgp2Dcp canonicalizer for the 1-x atom

Description

Dgp2Dcp canonicalizer for the 1-x atom

Usage

Dgp2Dcp.one_minus_pos_canon(expr, args)

Arguments

expr

An Expression object

args

A list of values for the expr variable

Value

A canonicalization of the 1-x with 0 < x < 1 atom of a DGP expression, where the returned expression is the transformed DCP equivalent.


Dgp2Dcp canonicalizer for the parameter atom

Description

Dgp2Dcp canonicalizer for the parameter atom

Usage

Dgp2Dcp.parameter_canon(expr, args)

Arguments

expr

An Expression object

args

A list of values for the expr variable

Value

A canonicalization of the parameter atom of a DGP expression, where the returned expression is the transformed DCP equivalent.


Dgp2Dcp canonicalizer for the spectral radius atom

Description

Dgp2Dcp canonicalizer for the spectral radius atom

Usage

Dgp2Dcp.pf_eigenvalue_canon(expr, args)

Arguments

expr

An Expression object

args

A list of values for the expr variable

Value

A canonicalization of the spectral radius atom of a DGP expression, where the returned expression is the transformed DCP equivalent.


Dgp2Dcp canonicalizer for the p norm atom

Description

Dgp2Dcp canonicalizer for the p norm atom

Usage

Dgp2Dcp.pnorm_canon(expr, args)

Arguments

expr

An Expression object

args

A list of values for the expr variable

Value

A canonicalization of the pnorm atom of a DGP expression, where the returned expression is the transformed DCP equivalent.


Dgp2Dcp canonicalizer for the power atom

Description

Dgp2Dcp canonicalizer for the power atom

Usage

Dgp2Dcp.power_canon(expr, args)

Arguments

expr

An Expression object

args

A list of values for the expr variable

Value

A canonicalization of the power atom of a DGP expression, where the returned expression is the transformed DCP equivalent.


Dgp2Dcp canonicalizer for the product atom

Description

Dgp2Dcp canonicalizer for the product atom

Usage

Dgp2Dcp.prod_canon(expr, args)

Arguments

expr

An Expression object

args

A list of values for the expr variable

Value

A canonicalization of the product atom of a DGP expression, where the returned expression is the transformed DCP equivalent.


Dgp2Dcp canonicalizer for the quadratic form atom

Description

Dgp2Dcp canonicalizer for the quadratic form atom

Usage

Dgp2Dcp.quad_form_canon(expr, args)

Arguments

expr

An Expression object

args

A list of values for the expr variable

Value

A canonicalization of the quadratic form atom of a DGP expression, where the returned expression is the transformed DCP equivalent.


Dgp2Dcp canonicalizer for the quadratic over linear term atom

Description

Dgp2Dcp canonicalizer for the quadratic over linear term atom

Usage

Dgp2Dcp.quad_over_lin_canon(expr, args)

Arguments

expr

An Expression object

args

A list of values for the expr variable

Value

A canonicalization of the quadratic over linear atom of a DGP expression, where the returned expression is the transformed DCP equivalent.


Dgp2Dcp canonicalizer for the sum atom

Description

Dgp2Dcp canonicalizer for the sum atom

Usage

Dgp2Dcp.sum_canon(expr, args)

Arguments

expr

An Expression object

args

A list of values for the expr variable

Value

A canonicalization of the sum atom of a DGP expression, where the returned expression is the transformed DCP equivalent.


Dgp2Dcp canonicalizer for the trace atom

Description

Dgp2Dcp canonicalizer for the trace atom

Usage

Dgp2Dcp.trace_canon(expr, args)

Arguments

expr

An Expression object

args

A list of values for the expr variable

Value

A canonicalization of the trace atom of a DGP expression, where the returned expression is the transformed DCP equivalent.


Dgp2Dcp canonicalizer for the zero constraint atom

Description

Dgp2Dcp canonicalizer for the zero constraint atom

Usage

Dgp2Dcp.zero_constr_canon(expr, args)

Arguments

expr

An Expression object

args

A list of values for the expr variable

Value

A canonicalization of the zero constraint atom of a DGP expression, where the returned expression is the transformed DCP equivalent.


DGP canonical methods class.

Description

Canonicalization of DGPs is a stateful procedure, hence the need for a class.

Usage

## S4 method for signature 'DgpCanonMethods'
names(x)

## S4 method for signature 'DgpCanonMethods'
x$name

Arguments

x

A DgpCanonMethods object.

name

The name of the atom or expression to canonicalize.

Methods (by generic)

  • names(DgpCanonMethods): Returns the name of all the canonicalization methods

  • $: Returns either a canonicalized variable or a corresponding Dgp2Dcp canonicalization method


Turns an expression into a DiagVec object

Description

Turns an expression into a DiagVec object

Usage

Diag(expr)

Arguments

expr

An Expression that represents a vector or square matrix.

Value

An Expression representing the diagonal vector/matrix.


Matrix Diagonal

Description

Extracts the diagonal from a matrix or makes a vector into a diagonal matrix.

Usage

## S4 method for signature 'Expression'
diag(x = 1, nrow, ncol)

Arguments

x

An Expression, vector, or square matrix.

nrow, ncol

(Optional) Dimensions for the result when x is not a matrix.

Value

An Expression representing the diagonal vector or matrix.

Examples

C <- Variable(3,3)
obj <- Maximize(C[1,3])
constraints <- list(diag(C) == 1, C[1,2] == 0.6, C[2,3] == -0.3, C == Variable(3,3, PSD = TRUE))
prob <- Problem(obj, constraints)
result <- solve(prob)
result$value
result$getValue(C)

The DiagMat class.

Description

This class represents the extraction of the diagonal from a square matrix.

Usage

DiagMat(expr)

## S4 method for signature 'DiagMat'
to_numeric(object, values)

## S4 method for signature 'DiagMat'
dim_from_args(object)

## S4 method for signature 'DiagMat'
is_atom_log_log_convex(object)

## S4 method for signature 'DiagMat'
is_atom_log_log_concave(object)

## S4 method for signature 'DiagMat'
graph_implementation(object, arg_objs, dim, data = NA_real_)

Arguments

expr

An Expression representing the matrix whose diagonal we are interested in.

object

A DiagMat object.

values

A list of arguments to the atom.

arg_objs

A list of linear expressions for each argument.

dim

A vector representing the dimensions of the resulting expression.

data

A list of additional data required by the atom.

Methods (by generic)

  • to_numeric(DiagMat): Extract the diagonal from a square matrix constant.

  • dim_from_args(DiagMat): The size of the atom.

  • is_atom_log_log_convex(DiagMat): Is the atom log-log convex?

  • is_atom_log_log_concave(DiagMat): Is the atom log-log concave?

  • graph_implementation(DiagMat): The graph implementation of the atom.

Slots

expr

An Expression representing the matrix whose diagonal we are interested in.


The DiagVec class.

Description

This class represents the conversion of a vector into a diagonal matrix.

Usage

DiagVec(expr)

## S4 method for signature 'DiagVec'
to_numeric(object, values)

## S4 method for signature 'DiagVec'
dim_from_args(object)

## S4 method for signature 'DiagVec'
is_atom_log_log_convex(object)

## S4 method for signature 'DiagVec'
is_atom_log_log_concave(object)

## S4 method for signature 'DiagVec'
is_symmetric(object)

## S4 method for signature 'DiagVec'
is_hermitian(object)

## S4 method for signature 'DiagVec'
graph_implementation(object, arg_objs, dim, data = NA_real_)

Arguments

expr

An Expression representing the vector to convert.

object

A DiagVec object.

values

A list of arguments to the atom.

arg_objs

A list of linear expressions for each argument.

dim

A vector representing the dimensions of the resulting expression.

data

A list of additional data required by the atom.

Methods (by generic)

  • to_numeric(DiagVec): Convert the vector constant into a diagonal matrix.

  • dim_from_args(DiagVec): The dimensions of the atom.

  • is_atom_log_log_convex(DiagVec): Is the atom log-log convex?

  • is_atom_log_log_concave(DiagVec): Is the atom log-log concave?

  • is_symmetric(DiagVec): Is the expression symmetric?

  • is_hermitian(DiagVec): Is the expression hermitian?

  • graph_implementation(DiagVec): The graph implementation of the atom.

Slots

expr

An Expression representing the vector to convert.


Takes the k-th order differences

Description

Takes the k-th order differences

Usage

Diff(x, lag = 1, k = 1, axis = 2)

Arguments

x

An Expression that represents a vector

lag

The degree of lag between differences

k

The integer value of the order of differences

axis

The axis along which to apply the function. For a 2D matrix, 1 indicates rows and 2 indicates columns.

Value

Takes in a vector of length n and returns a vector of length n-k of the kth order differences


Lagged and Iterated Differences

Description

The lagged and iterated differences of a vector. If x is length n, this function returns a length nkn-k vector of the kkth order difference between the lagged terms. diff(x) returns the vector of differences between adjacent elements in the vector, i.e. [x[2] - x[1], x[3] - x[2], ...]. diff(x,1,2) is the second-order differences vector, equivalently diff(diff(x)). diff(x,1,0) returns the vector x unchanged. diff(x,2) returns the vector of differences [x[3] - x[1], x[4] - x[2], ...], equivalent to x[(1+lag):n] - x[1:(n-lag)].

Usage

## S4 method for signature 'Expression'
diff(x, lag = 1, differences = 1, ...)

Arguments

x

An Expression.

lag

An integer indicating which lag to use.

differences

An integer indicating the order of the difference.

...

(Optional) Addition axis argument, specifying the dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is axis = 1.

Value

An Expression representing the kth order difference.

Examples

## Problem data
m <- 101
L <- 2
h <- L/(m-1)

## Form objective and constraints
x <- Variable(m)
y <- Variable(m)
obj <- sum(y)
constr <- list(x[1] == 0, y[1] == 1, x[m] == 1, y[m] == 1, diff(x)^2 + diff(y)^2 <= h^2)

## Solve the catenary problem
prob <- Problem(Minimize(obj), constr)
result <- solve(prob)

## Plot and compare with ideal catenary
xs <- result$getValue(x)
ys <- result$getValue(y)
plot(c(0, 1), c(0, 1), type = 'n', xlab = "x", ylab = "y")
lines(xs, ys, col = "blue", lwd = 2)
grid()

The DiffPos atom.

Description

The difference between expressions, xyx - y, where x>y>0x > y > 0.

Usage

DiffPos(x, y)

Arguments

x

An Expression

y

An Expression

Value

The difference xyx - y with domain x,y:x>y>0x,y: x > y > 0.


Atom Dimensions

Description

Determine the dimensions of an atom based on its arguments.

Usage

dim_from_args(object)

## S4 method for signature 'Atom'
dim_from_args(object)

Arguments

object

A Atom object.

Value

A numeric vector c(row, col) indicating the dimensions of the atom.


Domain

Description

A list of constraints describing the closure of the region where the expression is finite.

Usage

domain(object)

Arguments

object

An Expression object.

Value

A list of Constraint objects.

Examples

a <- Variable(name = "a")
dom <- domain(p_norm(a, -0.5))
prob <- Problem(Minimize(a), dom)
result <- solve(prob)
result$value

b <- Variable()
dom <- domain(kl_div(a, b))
result <- solve(Problem(Minimize(a + b), dom))
result$getValue(a)
result$getValue(b)

A <- Variable(2, 2, name = "A")
dom <- domain(lambda_max(A))
A0 <- rbind(c(1,2), c(3,4))
result <- solve(Problem(Minimize(norm2(A - A0)), dom))
result$getValue(A)

dom <- domain(log_det(A + diag(rep(1,2))))
prob <- Problem(Minimize(sum(diag(A))), dom)
result <- solve(prob, solver = "SCS")
result$value

Direct Standardization: Population

Description

Randomly generated data for direct standardization example. Sex was drawn from a Bernoulli distribution, and age was drawn from a uniform distribution on 10,,6010,\ldots,60. The response was drawn from a normal distribution with a mean that depends on sex and age, and a variance of 1.

Usage

dspop

Format

A data frame with 1000 rows and 3 variables:

y

Response variable

sex

Sex of individual, coded male (0) and female (1)

age

Age of individual

See Also

dssamp


Direct Standardization: Sample

Description

A sample of dspop for direct standardization example. The sample is skewed such that young males are overrepresented in comparison to the population.

Usage

dssamp

Format

A data frame with 100 rows and 3 variables:

y

Response variable

sex

Sex of individual, coded male (0) and female (1)

age

Age of individual

See Also

dspop


Get and Set Dual Value

Description

Get and set the value of the dual variable in a constraint.

Usage

dual_value(object)

dual_value(object) <- value

Arguments

object

A Constraint object.

value

A numeric scalar, vector, or matrix to assign to the object.


An interface for the ECOS BB solver.

Description

An interface for the ECOS BB solver.

Usage

ECOS_BB()

## S4 method for signature 'ECOS_BB'
mip_capable(solver)

## S4 method for signature 'ECOS_BB'
name(x)

## S4 method for signature 'ECOS_BB,Problem'
perform(object, problem)

## S4 method for signature 'ECOS_BB'
solve_via_data(
  object,
  data,
  warm_start,
  verbose,
  feastol,
  reltol,
  abstol,
  num_iter,
  solver_opts,
  solver_cache
)

Arguments

solver, object, x

A ECOS_BB object.

problem

A Problem object.

data

Data generated via an apply call.

warm_start

A boolean of whether to warm start the solver.

verbose

A boolean of whether to enable solver verbosity.

feastol

The feasible tolerance.

reltol

The relative tolerance.

abstol

The absolute tolerance.

num_iter

The maximum number of iterations.

solver_opts

A list of Solver specific options

solver_cache

Cache for the solver.

Methods (by generic)

  • mip_capable(ECOS_BB): Can the solver handle mixed-integer programs?

  • name(ECOS_BB): Returns the name of the solver.

  • perform(object = ECOS_BB, problem = Problem): Returns a new problem and data for inverting the new solution.

  • solve_via_data(ECOS_BB): Solve a problem represented by data returned from apply.


An interface for the ECOS solver

Description

An interface for the ECOS solver

Usage

ECOS()

## S4 method for signature 'ECOS'
mip_capable(solver)

## S4 method for signature 'ECOS'
status_map(solver, status)

## S4 method for signature 'ECOS'
import_solver(solver)

## S4 method for signature 'ECOS'
name(x)

## S4 method for signature 'ECOS,Problem'
perform(object, problem)

## S4 method for signature 'ECOS,list,list'
invert(object, solution, inverse_data)

Arguments

solver, object, x

A ECOS object.

status

A status code returned by the solver.

problem

A Problem object.

solution

The raw solution returned by the solver.

inverse_data

A list containing data necessary for the inversion.

Methods (by generic)

  • mip_capable(ECOS): Can the solver handle mixed-integer programs?

  • status_map(ECOS): Converts status returned by the ECOS solver to its respective CVXPY status.

  • import_solver(ECOS): Imports the solver

  • name(ECOS): Returns the name of the solver

  • perform(object = ECOS, problem = Problem): Returns a new problem and data for inverting the new solution.

  • invert(object = ECOS, solution = list, inverse_data = list): Returns the solution to the original problem given the inverse_data.


Utility method for formatting a ConeDims instance into a dictionary that can be supplied to ECOS.

Description

Utility method for formatting a ConeDims instance into a dictionary that can be supplied to ECOS.

Usage

ECOS.dims_to_solver_dict(cone_dims)

Arguments

cone_dims

A ConeDims instance.

Value

A dictionary of cone dimensions


The Elementwise class.

Description

This virtual class represents an elementwise atom.

Usage

## S4 method for signature 'Elementwise'
dim_from_args(object)

## S4 method for signature 'Elementwise'
validate_args(object)

## S4 method for signature 'Elementwise'
is_symmetric(object)

Arguments

object

An Elementwise object.

Methods (by generic)

  • dim_from_args(Elementwise): Dimensions is the same as the sum of the arguments' dimensions.

  • validate_args(Elementwise): Verify that all the dimensions are the same or can be promoted.

  • is_symmetric(Elementwise): Is the expression symmetric?


The EliminatePwl class.

Description

This class eliminates piecewise linear atoms.

Usage

## S4 method for signature 'EliminatePwl,Problem'
accepts(object, problem)

Arguments

object

An EliminatePwl object.

problem

A Problem object.

Methods (by generic)

  • accepts(object = EliminatePwl, problem = Problem): Does this problem contain piecewise linear atoms?


EliminatePwl canonicalizer for the absolute atom

Description

EliminatePwl canonicalizer for the absolute atom

Usage

EliminatePwl.abs_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A canonicalization of the picewise-lienar atom constructed from an absolute atom where the objective function consists of the variable that is of the same dimension as the original expression and the constraints consist of splitting the absolute value into two inequalities.


EliminatePwl canonicalizer for the cumulative max atom

Description

EliminatePwl canonicalizer for the cumulative max atom

Usage

EliminatePwl.cummax_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A canonicalization of the piecewise-lienar atom constructed from a cumulative max atom where the objective function consists of the variable Y which is of the same dimension as the original expression and the constraints consist of row/column constraints depending on the axis


EliminatePwl canonicalizer for the cumulative sum atom

Description

EliminatePwl canonicalizer for the cumulative sum atom

Usage

EliminatePwl.cumsum_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A canonicalization of the piecewise-lienar atom constructed from a cumulative sum atom where the objective is Y that is of the same dimension as the matrix of the expression and the constraints consist of various row constraints


EliminatePwl canonicalizer for the elementwise maximum atom

Description

EliminatePwl canonicalizer for the elementwise maximum atom

Usage

EliminatePwl.max_elemwise_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A canonicalization of the piecewise-lienar atom constructed by a elementwise maximum atom where the objective function is the variable t of the same dimension as the expression and the constraints consist of a simple inequality.


EliminatePwl canonicalizer for the max entries atom

Description

EliminatePwl canonicalizer for the max entries atom

Usage

EliminatePwl.max_entries_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A canonicalization of the piecewise-lienar atom constructed from the max entries atom where the objective function consists of the variable t of the same size as the original expression and the constraints consist of a vector multiplied by a vector of 1's.


EliminatePwl canonicalizer for the elementwise minimum atom

Description

EliminatePwl canonicalizer for the elementwise minimum atom

Usage

EliminatePwl.min_elemwise_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A canonicalization of the piecewise-lienar atom constructed by a minimum elementwise atom where the objective function is the negative of variable t t produced by max_elemwise_canon of the same dimension as the expression and the constraints consist of a simple inequality.


EliminatePwl canonicalizer for the minimum entries atom

Description

EliminatePwl canonicalizer for the minimum entries atom

Usage

EliminatePwl.min_entries_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A canonicalization of the piecewise-lienar atom constructed by a minimum entries atom where the objective function is the negative of variable t produced by max_elemwise_canon of the same dimension as the expression and the constraints consist of a simple inequality.


EliminatePwl canonicalizer for the infinite norm atom

Description

EliminatePwl canonicalizer for the infinite norm atom

Usage

EliminatePwl.norm_inf_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A canonicalization of the piecewise-lienar atom constructed by the infinite norm atom where the objective function consists variable t of the same dimension as the expression and the constraints consist of a vector constructed by multiplying t to a vector of 1's


EliminatePwl canonicalizer for the 1 norm atom

Description

EliminatePwl canonicalizer for the 1 norm atom

Usage

EliminatePwl.norm1_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A canonicalization of the piecewise-lienar atom constructed by the norm1 atom where the objective functino consists of the sum of the variables created by the abs_canon function and the constraints consist of constraints generated by abs_canon.


EliminatePwl canonicalizer for the largest sum atom

Description

EliminatePwl canonicalizer for the largest sum atom

Usage

EliminatePwl.sum_largest_canon(expr, args)

Arguments

expr

An Expression object

args

A list of Constraint objects

Value

A canonicalization of the piecewise-lienar atom constructed by the k largest sums atom where the objective function consists of the sum of variables t that is of the same dimension as the expression plus k


Entropy Function

Description

The elementwise entropy function, xlog(x)-xlog(x).

Usage

entr(x)

Arguments

x

An Expression, vector, or matrix.

Value

An Expression representing the entropy of the input.

Examples

x <- Variable(5)
obj <- Maximize(sum(entr(x)))
prob <- Problem(obj, list(sum(x) == 1))
result <- solve(prob)
result$getValue(x)

The Entr class.

Description

This class represents the elementwise operation xlog(x)-xlog(x).

Usage

Entr(x)

## S4 method for signature 'Entr'
to_numeric(object, values)

## S4 method for signature 'Entr'
sign_from_args(object)

## S4 method for signature 'Entr'
is_atom_convex(object)

## S4 method for signature 'Entr'
is_atom_concave(object)

## S4 method for signature 'Entr'
is_incr(object, idx)

## S4 method for signature 'Entr'
is_decr(object, idx)

## S4 method for signature 'Entr'
.grad(object, values)

## S4 method for signature 'Entr'
.domain(object)

Arguments

x

An Expression or numeric constant.

object

An Entr object.

values

A list of numeric values for the arguments

idx

An index into the atom.

Methods (by generic)

  • to_numeric(Entr): The elementwise entropy function evaluated at the value.

  • sign_from_args(Entr): The sign of the atom is unknown.

  • is_atom_convex(Entr): The atom is not convex.

  • is_atom_concave(Entr): The atom is concave.

  • is_incr(Entr): The atom is weakly increasing.

  • is_decr(Entr): The atom is weakly decreasing.

  • .grad(Entr): Gives the (sub/super)gradient of the atom w.r.t. each variable

  • .domain(Entr): Returns constraints descrbing the domain of the node

Slots

x

An Expression or numeric constant.


The EvalParams class.

Description

This class represents a reduction that replaces symbolic parameters with their constaint values.

Usage

## S4 method for signature 'EvalParams,Problem'
perform(object, problem)

## S4 method for signature 'EvalParams,Solution,list'
invert(object, solution, inverse_data)

Arguments

object

A EvalParams object.

problem

A Problem object.

solution

A Solution to a problem that generated the inverse data.

inverse_data

The inverse data returned by an invocation to apply.

Methods (by generic)

  • perform(object = EvalParams, problem = Problem): Replace parameters with constant values.

  • invert(object = EvalParams, solution = Solution, inverse_data = list): Returns a solution to the original problem given the inverse_data.


The Exp class.

Description

This class represents the elementwise natural exponential exe^x.

Usage

Exp(x)

## S4 method for signature 'Exp'
to_numeric(object, values)

## S4 method for signature 'Exp'
sign_from_args(object)

## S4 method for signature 'Exp'
is_atom_convex(object)

## S4 method for signature 'Exp'
is_atom_concave(object)

## S4 method for signature 'Exp'
is_atom_log_log_convex(object)

## S4 method for signature 'Exp'
is_atom_log_log_concave(object)

## S4 method for signature 'Exp'
is_incr(object, idx)

## S4 method for signature 'Exp'
is_decr(object, idx)

## S4 method for signature 'Exp'
.grad(object, values)

Arguments

x

An Expression object.

object

An Exp object.

values

A list of numeric values for the arguments

idx

An index into the atom.

Methods (by generic)

  • to_numeric(Exp): The matrix with each element exponentiated.

  • sign_from_args(Exp): The atom is positive.

  • is_atom_convex(Exp): The atom is convex.

  • is_atom_concave(Exp): The atom is not concave.

  • is_atom_log_log_convex(Exp): Is the atom log-log convex?

  • is_atom_log_log_concave(Exp): Is the atom log-log concave?

  • is_incr(Exp): The atom is weakly increasing.

  • is_decr(Exp): The atom is not weakly decreasing.

  • .grad(Exp): Gives the (sub/super)gradient of the atom w.r.t. each variable

Slots

x

An Expression object.


Natural Exponential

Description

The elementwise natural exponential.

Usage

## S4 method for signature 'Expression'
exp(x)

Arguments

x

An Expression.

Value

An Expression representing the natural exponential of the input.

Examples

x <- Variable(5)
obj <- Minimize(sum(exp(x)))
prob <- Problem(obj, list(sum(x) == 1))
result <- solve(prob)
result$getValue(x)

The ExpCone class.

Description

This class represents a reformulated exponential cone constraint operating elementwise on a,b,ca, b, c.

Usage

ExpCone(x, y, z, id = NA_integer_)

## S4 method for signature 'ExpCone'
as.character(x)

## S4 method for signature 'ExpCone'
residual(object)

## S4 method for signature 'ExpCone'
size(object)

## S4 method for signature 'ExpCone'
num_cones(object)

## S4 method for signature 'ExpCone'
cone_sizes(object)

## S4 method for signature 'ExpCone'
is_dcp(object)

## S4 method for signature 'ExpCone'
is_dgp(object)

## S4 method for signature 'ExpCone'
canonicalize(object)

Arguments

x

The variable xx in the exponential cone.

y

The variable yy in the exponential cone.

z

The variable zz in the exponential cone.

id

(Optional) A numeric value representing the constraint ID.

object

A ExpCone object.

Details

Original cone:

K={(x,y,z)y>0,yex/yz}{(x,y,z)x0,y=0,z0}K = \{(x,y,z) | y > 0, ye^{x/y} \leq z\} \cup \{(x,y,z) | x \leq 0, y = 0, z \geq 0\}

Reformulated cone:

K={(x,y,z)y,z>0,ylog(y)+xylog(z)}{(x,y,z)x0,y=0,z0}K = \{(x,y,z) | y, z > 0, y\log(y) + x \leq y\log(z)\} \cup \{(x,y,z) | x \leq 0, y = 0, z \geq 0\}

Methods (by generic)

  • residual(ExpCone): The size of the x argument.

  • size(ExpCone): The number of entries in the combined cones.

  • num_cones(ExpCone): The number of elementwise cones.

  • cone_sizes(ExpCone): The dimensions of the exponential cones.

  • is_dcp(ExpCone): An exponential constraint is DCP if each argument is affine.

  • is_dgp(ExpCone): Is the constraint DGP?

  • canonicalize(ExpCone): Canonicalizes by converting expressions to LinOps.

Slots

x

The variable xx in the exponential cone.

y

The variable yy in the exponential cone.

z

The variable zz in the exponential cone.


The Expression class.

Description

This class represents a mathematical expression.

Usage

## S4 method for signature 'Expression'
value(object)

## S4 method for signature 'Expression'
grad(object)

## S4 method for signature 'Expression'
domain(object)

## S4 method for signature 'Expression'
as.character(x)

## S4 method for signature 'Expression'
name(x)

## S4 method for signature 'Expression'
expr(object)

## S4 method for signature 'Expression'
is_constant(object)

## S4 method for signature 'Expression'
is_affine(object)

## S4 method for signature 'Expression'
is_convex(object)

## S4 method for signature 'Expression'
is_concave(object)

## S4 method for signature 'Expression'
is_dcp(object)

## S4 method for signature 'Expression'
is_log_log_constant(object)

## S4 method for signature 'Expression'
is_log_log_affine(object)

## S4 method for signature 'Expression'
is_log_log_convex(object)

## S4 method for signature 'Expression'
is_log_log_concave(object)

## S4 method for signature 'Expression'
is_dgp(object)

## S4 method for signature 'Expression'
is_hermitian(object)

## S4 method for signature 'Expression'
is_psd(object)

## S4 method for signature 'Expression'
is_nsd(object)

## S4 method for signature 'Expression'
is_quadratic(object)

## S4 method for signature 'Expression'
is_symmetric(object)

## S4 method for signature 'Expression'
is_pwl(object)

## S4 method for signature 'Expression'
is_qpwa(object)

## S4 method for signature 'Expression'
is_zero(object)

## S4 method for signature 'Expression'
is_nonneg(object)

## S4 method for signature 'Expression'
is_nonpos(object)

## S4 method for signature 'Expression'
dim(x)

## S4 method for signature 'Expression'
is_real(object)

## S4 method for signature 'Expression'
is_imag(object)

## S4 method for signature 'Expression'
is_complex(object)

## S4 method for signature 'Expression'
size(object)

## S4 method for signature 'Expression'
ndim(object)

## S4 method for signature 'Expression'
flatten(object)

## S4 method for signature 'Expression'
is_scalar(object)

## S4 method for signature 'Expression'
is_vector(object)

## S4 method for signature 'Expression'
is_matrix(object)

## S4 method for signature 'Expression'
nrow(x)

## S4 method for signature 'Expression'
ncol(x)

Arguments

x, object

An Expression object.

Methods (by generic)

  • value(Expression): The value of the expression.

  • grad(Expression): The (sub/super)-gradient of the expression with respect to each variable.

  • domain(Expression): A list of constraints describing the closure of the region where the expression is finite.

  • as.character(Expression): The string representation of the expression.

  • name(Expression): The name of the expression.

  • expr(Expression): The expression itself.

  • is_constant(Expression): The expression is constant if it contains no variables or is identically zero.

  • is_affine(Expression): The expression is affine if it is constant or both convex and concave.

  • is_convex(Expression): A logical value indicating whether the expression is convex.

  • is_concave(Expression): A logical value indicating whether the expression is concave.

  • is_dcp(Expression): The expression is DCP if it is convex or concave.

  • is_log_log_constant(Expression): Is the expression log-log constant, i.e., elementwise positive?

  • is_log_log_affine(Expression): Is the expression log-log affine?

  • is_log_log_convex(Expression): Is the expression log-log convex?

  • is_log_log_concave(Expression): Is the expression log-log concave?

  • is_dgp(Expression): The expression is DGP if it is log-log DCP.

  • is_hermitian(Expression): A logical value indicating whether the expression is a Hermitian matrix.

  • is_psd(Expression): A logical value indicating whether the expression is a positive semidefinite matrix.

  • is_nsd(Expression): A logical value indicating whether the expression is a negative semidefinite matrix.

  • is_quadratic(Expression): A logical value indicating whether the expression is quadratic.

  • is_symmetric(Expression): A logical value indicating whether the expression is symmetric.

  • is_pwl(Expression): A logical value indicating whether the expression is piecewise linear.

  • is_qpwa(Expression): A logical value indicating whether the expression is quadratic of piecewise affine.

  • is_zero(Expression): The expression is zero if it is both nonnegative and nonpositive.

  • is_nonneg(Expression): A logical value indicating whether the expression is nonnegative.

  • is_nonpos(Expression): A logical value indicating whether the expression is nonpositive.

  • dim(Expression): The c(row, col) dimensions of the expression.

  • is_real(Expression): A logical value indicating whether the expression is real.

  • is_imag(Expression): A logical value indicating whether the expression is imaginary.

  • is_complex(Expression): A logical value indicating whether the expression is complex.

  • size(Expression): The number of entries in the expression.

  • ndim(Expression): The number of dimensions of the expression.

  • flatten(Expression): Vectorizes the expression.

  • is_scalar(Expression): A logical value indicating whether the expression is a scalar.

  • is_vector(Expression): A logical value indicating whether the expression is a row or column vector.

  • is_matrix(Expression): A logical value indicating whether the expression is a matrix.

  • nrow(Expression): Number of rows in the expression.

  • ncol(Expression): Number of columns in the expression.


Parts of an Expression Leaf

Description

List the variables, parameters, constants, or atoms in a canonical expression.

Usage

variables(object)

parameters(object)

constants(object)

atoms(object)

Arguments

object

A Leaf object.

Value

A list of Variable, Parameter, Constant, or Atom objects.

Examples

set.seed(67)
m <- 50
n <- 10
beta <- Variable(n)
y <- matrix(rnorm(m), nrow = m)
X <- matrix(rnorm(m*n), nrow = m, ncol = n)
lambda <- Parameter()

expr <- sum_squares(y - X %*% beta) + lambda*p_norm(beta, 1)
variables(expr)
parameters(expr)
constants(expr)
lapply(constants(expr), function(c) { value(c) })

Gets a specified value of a dual variable.

Description

Gets a specified value of a dual variable.

Usage

extract_dual_value(result_vec, offset, constraint)

Arguments

result_vec

A vector containing the dual variable values.

offset

An offset to get correct index of dual values.

constraint

A list of the constraints in the problem.

Value

A list of a dual variable value and its offset.


Coalesces bool, int indices for variables.

Description

Coalesces bool, int indices for variables.

Usage

extract_mip_idx(variables)

Arguments

variables

A list of Variable objects.

Value

Coalesces bool, int indices for variables. The indexing scheme assumes that the variables will be coalesced into a single one-dimensional variable, with each variable being reshaped in Fortran order.


Unity Resolvent

Description

The unity resolvent of a positive matrix. For an elementwise positive matrix XX, this atom represents (IX)1(I - X)^{-1}, and it enforces the constraint that the spectral radius of XX is at most 1.

Usage

eye_minus_inv(X)

Arguments

X

An Expression or positive square matrix.

Details

This atom is log-log convex.

Value

An Expression representing the unity resolvent of the input.

Examples

A <- Variable(2,2, pos = TRUE)
prob <- Problem(Minimize(matrix_trace(A)), list(eye_minus_inv(A) <=1))
result <- solve(prob, gp = TRUE)
result$value
result$getValue(A)

The EyeMinusInv class.

Description

This class represents the unity resolvent of an elementwise positive matrix XX, i.e., (IX)1(I - X)^{-1}, and it enforces the constraint that the spectral radius of XX is at most 1. This atom is log-log convex.

Usage

EyeMinusInv(X)

## S4 method for signature 'EyeMinusInv'
to_numeric(object, values)

## S4 method for signature 'EyeMinusInv'
name(x)

## S4 method for signature 'EyeMinusInv'
dim_from_args(object)

## S4 method for signature 'EyeMinusInv'
sign_from_args(object)

## S4 method for signature 'EyeMinusInv'
is_atom_convex(object)

## S4 method for signature 'EyeMinusInv'
is_atom_concave(object)

## S4 method for signature 'EyeMinusInv'
is_atom_log_log_convex(object)

## S4 method for signature 'EyeMinusInv'
is_atom_log_log_concave(object)

## S4 method for signature 'EyeMinusInv'
is_incr(object, idx)

## S4 method for signature 'EyeMinusInv'
is_decr(object, idx)

## S4 method for signature 'EyeMinusInv'
.grad(object, values)

Arguments

X

An Expression or numeric matrix.

object, x

An EyeMinusInv object.

values

A list of numeric values for the arguments

idx

An index into the atom.

Methods (by generic)

  • to_numeric(EyeMinusInv): The unity resolvent of the matrix.

  • name(EyeMinusInv): The name and arguments of the atom.

  • dim_from_args(EyeMinusInv): The dimensions of the atom determined from its arguments.

  • sign_from_args(EyeMinusInv): The (is positive, is negative) sign of the atom.

  • is_atom_convex(EyeMinusInv): Is the atom convex?

  • is_atom_concave(EyeMinusInv): Is the atom concave?

  • is_atom_log_log_convex(EyeMinusInv): Is the atom log-log convex?

  • is_atom_log_log_concave(EyeMinusInv): Is the atom log-log concave?

  • is_incr(EyeMinusInv): Is the atom weakly increasing in the index?

  • is_decr(EyeMinusInv): Is the atom weakly decreasing in the index?

  • .grad(EyeMinusInv): Gives EyeMinusInv the (sub/super)gradient of the atom w.r.t. each variable

Slots

X

An Expression or numeric matrix.


The FlipObjective class.

Description

This class represents a reduction that flips a minimization objective to a maximization and vice versa.

Usage

## S4 method for signature 'FlipObjective,Problem'
perform(object, problem)

## S4 method for signature 'FlipObjective,Solution,list'
invert(object, solution, inverse_data)

Arguments

object

A FlipObjective object.

problem

A Problem object.

solution

A Solution to a problem that generated the inverse data.

inverse_data

The inverse data returned by an invocation to apply.

Methods (by generic)

  • perform(object = FlipObjective, problem = Problem): Flip a minimization objective to a maximization and vice versa.

  • invert(object = FlipObjective, solution = Solution, inverse_data = list): Map the solution of the flipped problem to that of the original.


Format Constraints

Description

Format constraints for the solver.

Usage

format_constr(object, eq_constr, leq_constr, dims, solver)

Arguments

object

A Constraint object.

eq_constr

A list of the equality constraints in the canonical problem.

leq_constr

A list of the inequality constraints in the canonical problem.

dims

A list with the dimensions of the conic constraints.

solver

A string representing the solver to be called.

Value

A list containing equality constraints, inequality constraints, and dimensions.


Geometric Mean

Description

The (weighted) geometric mean of vector xx with optional powers given by pp.

Usage

geo_mean(x, p = NA_real_, max_denom = 1024)

Arguments

x

An Expression or vector.

p

(Optional) A vector of weights for the weighted geometric mean. Defaults to a vector of ones, giving the unweighted geometric mean x11/nxn1/nx_1^{1/n} \cdots x_n^{1/n}.

max_denom

(Optional) The maximum denominator to use in approximating p/sum(p) with w. If w is not an exact representation, increasing max_denom may offer a more accurate representation, at the cost of requiring more convex inequalities to represent the geometric mean. Defaults to 1024.

Details

(x1p1xnpn)11Tp\left(x_1^{p_1} \cdots x_n^{p_n} \right)^{\frac{1}{\mathbf{1}^Tp}}

The geometric mean includes an implicit constraint that xi0x_i \geq 0 whenever pi>0p_i > 0. If pi=0,xip_i = 0, x_i will be unconstrained. The only exception to this rule occurs when pp has exactly one nonzero element, say pip_i, in which case geo_mean(x,p) is equivalent to xix_i (without the nonnegativity constraint). A specific case of this is when xR1x \in \mathbf{R}^1.

Value

An Expression representing the geometric mean of the input.

Examples

x <- Variable(2)
cost <- geo_mean(x)
prob <- Problem(Maximize(cost), list(sum(x) <= 1))
result <- solve(prob)
result$value
result$getValue(x)

## Not run: 
  x <- Variable(5)
  p <- c(0.07, 0.12, 0.23, 0.19, 0.39)
  prob <- Problem(Maximize(geo_mean(x,p)), list(p_norm(x) <= 1))
  result <- solve(prob)
  result$value
  result$getValue(x)

## End(Not run)

The GeoMean class.

Description

This class represents the (weighted) geometric mean of vector xx with optional powers given by pp.

Usage

GeoMean(x, p = NA_real_, max_denom = 1024)

## S4 method for signature 'GeoMean'
to_numeric(object, values)

## S4 method for signature 'GeoMean'
.domain(object)

## S4 method for signature 'GeoMean'
.grad(object, values)

## S4 method for signature 'GeoMean'
name(x)

## S4 method for signature 'GeoMean'
dim_from_args(object)

## S4 method for signature 'GeoMean'
sign_from_args(object)

## S4 method for signature 'GeoMean'
is_atom_convex(object)

## S4 method for signature 'GeoMean'
is_atom_concave(object)

## S4 method for signature 'GeoMean'
is_atom_log_log_convex(object)

## S4 method for signature 'GeoMean'
is_atom_log_log_concave(object)

## S4 method for signature 'GeoMean'
is_incr(object, idx)

## S4 method for signature 'GeoMean'
is_decr(object, idx)

## S4 method for signature 'GeoMean'
get_data(object)

## S4 method for signature 'GeoMean'
copy(object, args = NULL, id_objects = list())

Arguments

x

An Expression or numeric vector.

p

(Optional) A vector of weights for the weighted geometric mean. The default is a vector of ones, giving the unweighted geometric mean x11/nxn1/nx_1^{1/n} \cdots x_n^{1/n}.

max_denom

(Optional) The maximum denominator to use in approximating p/sum(p) with w. If w is not an exact representation, increasing max_denom may offer a more accurate representation, at the cost of requiring more convex inequalities to represent the geometric mean. Defaults to 1024.

object

A GeoMean object.

values

A list of numeric values for the arguments

idx

An index into the atom.

args

An optional list that contains the arguments to reconstruct the atom. Default is to use current arguments of the atom.

id_objects

Currently unused.

Details

(x1p1xnpn)11Tp\left(x_1^{p_1} \cdots x_n^{p_n} \right)^{\frac{1}{\mathbf{1}^Tp}}

The geometric mean includes an implicit constraint that xi0x_i \geq 0 whenever pi>0p_i > 0. If pi=0,xip_i = 0, x_i will be unconstrained. The only exception to this rule occurs when pp has exactly one nonzero element, say pip_i, in which case GeoMean(x,p) is equivalent to xix_i (without the nonnegativity constraint). A specific case of this is when xR1x \in \mathbf{R}^1.

Methods (by generic)

  • to_numeric(GeoMean): The (weighted) geometric mean of the elements of x.

  • .domain(GeoMean): Returns constraints describing the domain of the node

  • .grad(GeoMean): Gives the (sub/super)gradient of the atom w.r.t. each variable

  • name(GeoMean): The name and arguments of the atom.

  • dim_from_args(GeoMean): The atom is a scalar.

  • sign_from_args(GeoMean): The atom is non-negative.

  • is_atom_convex(GeoMean): The atom is not convex.

  • is_atom_concave(GeoMean): The atom is concave.

  • is_atom_log_log_convex(GeoMean): Is the atom log-log convex?

  • is_atom_log_log_concave(GeoMean): Is the atom log-log concave?

  • is_incr(GeoMean): The atom is weakly increasing in every argument.

  • is_decr(GeoMean): The atom is not weakly decreasing in any argument.

  • get_data(GeoMean): Returns list(w, dyadic completion, tree of dyads).

  • copy(GeoMean): Returns a shallow copy of the GeoMean atom

Slots

x

An Expression or numeric vector.

p

(Optional) A vector of weights for the weighted geometric mean. The default is a vector of ones, giving the unweighted geometric mean x11/nxn1/nx_1^{1/n} \cdots x_n^{1/n}.

max_denom

(Optional) The maximum denominator to use in approximating p/sum(p) with w. If w is not an exact representation, increasing max_denom may offer a more accurate representation, at the cost of requiring more convex inequalities to represent the geometric mean. Defaults to 1024.

w

(Internal) A list of bigq objects that represent a rational approximation of p/sum(p).

approx_error

(Internal) The error in approximating p/sum(p) with w, given by p/1Tpw\|p/\mathbf{1}^Tp - w\|_{\infty}.


Get Expression Data

Description

Get information needed to reconstruct the expression aside from its arguments.

Usage

get_data(object)

Arguments

object

A Expression object.

Value

A list containing data.


Gets the values of the dual variables.

Description

Gets the values of the dual variables.

Usage

get_dual_values(result_vec, parse_func, constraints)

Arguments

result_vec

A vector containing the dual variable values.

parse_func

Function handle for the parser.

constraints

A list of the constraints in the problem.

Value

A map of constraint ID to dual variable value.


Get ID

Description

Get the next identifier value.

Usage

get_id()

Value

A new unique integer identifier.

Examples

## Not run: 
   get_id()

## End(Not run)

Get numpy handle

Description

Get the numpy handle or fail if not available

Usage

get_np()

Value

the numpy handle

Examples

## Not run: 
   get_np

## End(Not run)

Get Problem Data

Description

Get the problem data used in the call to the solver.

Usage

get_problem_data(object, solver, gp)

Arguments

object

A Problem object.

solver

A string indicating the solver that the problem data is for. Call installed_solvers() to see all available.

gp

(Optional) A logical value indicating whether the problem is a geometric program.

Value

A list containing the data for the solver, the solving chain for the problem, and the inverse data needed to invert the solution.

Examples

a <- Variable(name = "a")
data <- get_problem_data(Problem(Minimize(exp(a) + 2)), "SCS")[[1]]
data[["dims"]]
data[["c"]]
data[["A"]]

x <- Variable(2, name = "x")
data <- get_problem_data(Problem(Minimize(p_norm(x) + 3)), "ECOS")[[1]]
data[["dims"]]
data[["c"]]
data[["A"]]
data[["G"]]

Get scipy handle

Description

Get the scipy handle or fail if not available

Usage

get_sp()

Value

the scipy handle

Examples

## Not run: 
   get_sp

## End(Not run)

An interface for the GLPK MI solver.

Description

An interface for the GLPK MI solver.

Usage

GLPK_MI()

## S4 method for signature 'GLPK_MI'
mip_capable(solver)

## S4 method for signature 'GLPK_MI'
status_map(solver, status)

## S4 method for signature 'GLPK_MI'
name(x)

## S4 method for signature 'GLPK_MI'
solve_via_data(
  object,
  data,
  warm_start,
  verbose,
  feastol,
  reltol,
  abstol,
  num_iter,
  solver_opts,
  solver_cache
)

Arguments

solver, object, x

A GLPK_MI object.

status

A status code returned by the solver.

data

Data generated via an apply call.

warm_start

A boolean of whether to warm start the solver.

verbose

A boolean of whether to enable solver verbosity.

feastol

The feasible tolerance.

reltol

The relative tolerance.

abstol

The absolute tolerance.

num_iter

The maximum number of iterations.

solver_opts

A list of Solver specific options

solver_cache

Cache for the solver.

Methods (by generic)

  • mip_capable(GLPK_MI): Can the solver handle mixed-integer programs?

  • status_map(GLPK_MI): Converts status returned by the GLPK_MI solver to its respective CVXPY status.

  • name(GLPK_MI): Returns the name of the solver.

  • solve_via_data(GLPK_MI): Solve a problem represented by data returned from apply.


An interface for the GLPK solver.

Description

An interface for the GLPK solver.

Usage

GLPK()

## S4 method for signature 'GLPK'
mip_capable(solver)

## S4 method for signature 'GLPK'
status_map(solver, status)

## S4 method for signature 'GLPK'
name(x)

## S4 method for signature 'GLPK'
import_solver(solver)

## S4 method for signature 'GLPK,list,list'
invert(object, solution, inverse_data)

## S4 method for signature 'GLPK'
solve_via_data(
  object,
  data,
  warm_start,
  verbose,
  feastol,
  reltol,
  abstol,
  num_iter,
  solver_opts,
  solver_cache
)

Arguments

solver, object, x

A GLPK object.

status

A status code returned by the solver.

solution

The raw solution returned by the solver.

inverse_data

A list containing data necessary for the inversion.

data

Data generated via an apply call.

warm_start

A boolean of whether to warm start the solver.

verbose

A boolean of whether to enable solver verbosity.

feastol

The feasible tolerance.

reltol

The relative tolerance.

abstol

The absolute tolerance.

num_iter

The maximum number of iterations.

solver_opts

A list of Solver specific options

solver_cache

Cache for the solver.

Methods (by generic)

  • mip_capable(GLPK): Can the solver handle mixed-integer programs?

  • status_map(GLPK): Converts status returned by the GLPK solver to its respective CVXPY status.

  • name(GLPK): Returns the name of the solver.

  • import_solver(GLPK): Imports the solver.

  • invert(object = GLPK, solution = list, inverse_data = list): Returns the solution to the original problem given the inverse_data.

  • solve_via_data(GLPK): Solve a problem represented by data returned from apply.


Sub/Super-Gradient

Description

The (sub/super)-gradient of the expression with respect to each variable. Matrix expressions are vectorized, so the gradient is a matrix. NA indicates variable values are unknown or outside the domain.

Usage

grad(object)

Arguments

object

An Expression object.

Value

A list mapping each variable to a sparse matrix.

Examples

x <- Variable(2, name = "x")
A <- Variable(2, 2, name = "A")

value(x) <- c(-3,4)
expr <- p_norm(x, 2)
grad(expr)

value(A) <- rbind(c(3,-4), c(4,3))
expr <- p_norm(A, 0.5)
grad(expr)

value(A) <- cbind(c(1,2), c(-1,0))
expr <- abs(A)
grad(expr)

Graph Implementation

Description

Reduces the atom to an affine expression and list of constraints.

Usage

graph_implementation(object, arg_objs, dim, data)

Arguments

object

An Expression object.

arg_objs

A list of linear expressions for each argument.

dim

A vector representing the dimensions of the resulting expression.

data

A list of additional data required by the atom.

Value

A list of list(LinOp for objective, list of constraints), where LinOp is a list representing the linear operator.


Organize the constraints into a dictionary keyed by constraint names.

Description

Organize the constraints into a dictionary keyed by constraint names.

Usage

group_constraints(constraints)

Arguments

constraints

a list of constraints.

Value

A list of constraint types where constr_map[[cone_type]] maps to a list.


An interface for the GUROBI conic solver.

Description

An interface for the GUROBI conic solver.

Usage

GUROBI_CONIC()

## S4 method for signature 'GUROBI_CONIC'
mip_capable(solver)

## S4 method for signature 'GUROBI_CONIC'
name(x)

## S4 method for signature 'GUROBI_CONIC'
import_solver(solver)

## S4 method for signature 'GUROBI_CONIC'
status_map(solver, status)

## S4 method for signature 'GUROBI_CONIC,Problem'
accepts(object, problem)

## S4 method for signature 'GUROBI_CONIC,Problem'
perform(object, problem)

## S4 method for signature 'GUROBI_CONIC,list,list'
invert(object, solution, inverse_data)

## S4 method for signature 'GUROBI_CONIC'
solve_via_data(
  object,
  data,
  warm_start,
  verbose,
  feastol,
  reltol,
  abstol,
  num_iter,
  solver_opts,
  solver_cache
)

Arguments

solver, object, x

A GUROBI_CONIC object.

status

A status code returned by the solver.

problem

A Problem object.

solution

The raw solution returned by the solver.

inverse_data

A list containing data necessary for the inversion.

data

Data generated via an apply call.

warm_start

A boolean of whether to warm start the solver.

verbose

A boolean of whether to enable solver verbosity.

feastol

The feasible tolerance.

reltol

The relative tolerance.

abstol

The absolute tolerance.

num_iter

The maximum number of iterations.

solver_opts

A list of Solver specific options

solver_cache

Cache for the solver.

Methods (by generic)

  • mip_capable(GUROBI_CONIC): Can the solver handle mixed-integer programs?

  • name(GUROBI_CONIC): Returns the name of the solver.

  • import_solver(GUROBI_CONIC): Imports the solver.

  • status_map(GUROBI_CONIC): Converts status returned by the GUROBI solver to its respective CVXPY status.

  • accepts(object = GUROBI_CONIC, problem = Problem): Can GUROBI_CONIC solve the problem?

  • perform(object = GUROBI_CONIC, problem = Problem): Returns a new problem and data for inverting the new solution.

  • invert(object = GUROBI_CONIC, solution = list, inverse_data = list): Returns the solution to the original problem given the inverse_data.

  • solve_via_data(GUROBI_CONIC): Solve a problem represented by data returned from apply.


An interface for the GUROBI_QP solver.

Description

An interface for the GUROBI_QP solver.

Usage

GUROBI_QP()

## S4 method for signature 'GUROBI_QP'
mip_capable(solver)

## S4 method for signature 'GUROBI_QP'
status_map(solver, status)

## S4 method for signature 'GUROBI_QP'
name(x)

## S4 method for signature 'GUROBI_QP'
import_solver(solver)

## S4 method for signature 'GUROBI_QP'
solve_via_data(
  object,
  data,
  warm_start,
  verbose,
  feastol,
  reltol,
  abstol,
  num_iter,
  solver_opts,
  solver_cache
)

## S4 method for signature 'GUROBI_QP,list,InverseData'
invert(object, solution, inverse_data)

Arguments

solver, object, x

A GUROBI_QP object.

status

A status code returned by the solver.

data

Data generated via an apply call.

warm_start

A boolean of whether to warm start the solver.

verbose

A boolean of whether to enable solver verbosity.

feastol

The feasible tolerance.

reltol

The relative tolerance.

abstol

The absolute tolerance.

num_iter

The maximum number of iterations.

solver_opts

A list of Solver specific options

solver_cache

Cache for the solver.

solution

The raw solution returned by the solver.

inverse_data

A InverseData object containing data necessary for the inversion.

Methods (by generic)

  • mip_capable(GUROBI_QP): Can the solver handle mixed-integer programs?

  • status_map(GUROBI_QP): Converts status returned by the GUROBI solver to its respective CVXPY status.

  • name(GUROBI_QP): Returns the name of the solver.

  • import_solver(GUROBI_QP): Imports the solver.

  • solve_via_data(GUROBI_QP): Solve a problem represented by data returned from apply.

  • invert(object = GUROBI_QP, solution = list, inverse_data = InverseData): Returns the solution to the original problem given the inverse_data.


Harmonic Mean

Description

The harmonic mean, (1ni=1nxi1)1\left(\frac{1}{n} \sum_{i=1}^n x_i^{-1}\right)^{-1}. For a matrix, the function is applied over all entries.

Usage

harmonic_mean(x)

Arguments

x

An Expression, vector, or matrix.

Value

An Expression representing the harmonic mean of the input.

Examples

x <- Variable()
prob <- Problem(Maximize(harmonic_mean(x)), list(x >= 0, x <= 5))
result <- solve(prob)
result$value
result$getValue(x)

The HarmonicMean atom.

Description

The harmonic mean of x, 1ni=1nxi1\frac{1}{n} \sum_{i=1}^n x_i^{-1}, where n is the length of x.

Usage

HarmonicMean(x)

Arguments

x

An expression or number whose harmonic mean is to be computed. Must have positive entries.

Value

The harmonic mean of x.


Horizontal Concatenation

Description

The horizontal concatenation of expressions. This is equivalent to cbind when applied to objects with the same number of rows.

Usage

hstack(...)

Arguments

...

Expression objects, vectors, or matrices. All arguments must have the same number of rows.

Value

An Expression representing the concatenated inputs.

Examples

x <- Variable(2)
y <- Variable(3)
c <- matrix(1, nrow = 1, ncol = 5)
prob <- Problem(Minimize(c %*% t(hstack(t(x), t(y)))), list(x == c(1,2), y == c(3,4,5)))
result <- solve(prob)
result$value

c <- matrix(1, nrow = 1, ncol = 4)
prob <- Problem(Minimize(c %*% t(hstack(t(x), t(x)))), list(x == c(1,2)))
result <- solve(prob)
result$value

A <- Variable(2,2)
C <- Variable(3,2)
c <- matrix(1, nrow = 2, ncol = 2)
prob <- Problem(Minimize(sum_entries(hstack(t(A), t(C)))), list(A >= 2*c, C == -2))
result <- solve(prob)
result$value
result$getValue(A)

D <- Variable(3,3)
expr <- hstack(C, D)
obj <- expr[1,2] + sum(hstack(expr, expr))
constr <- list(C >= 0, D >= 0, D[1,1] == 2, C[1,2] == 3)
prob <- Problem(Minimize(obj), constr)
result <- solve(prob)
result$value
result$getValue(C)
result$getValue(D)

The HStack class.

Description

Horizontal concatenation of values.

Usage

HStack(...)

## S4 method for signature 'HStack'
to_numeric(object, values)

## S4 method for signature 'HStack'
dim_from_args(object)

## S4 method for signature 'HStack'
is_atom_log_log_convex(object)

## S4 method for signature 'HStack'
is_atom_log_log_concave(object)

## S4 method for signature 'HStack'
validate_args(object)

## S4 method for signature 'HStack'
graph_implementation(object, arg_objs, dim, data = NA_real_)

Arguments

...

Expression objects or matrices. All arguments must have the same dimensions except for axis 2 (columns).

object

A HStack object.

values

A list of arguments to the atom.

arg_objs

A list of linear expressions for each argument.

dim

A vector representing the dimensions of the resulting expression.

data

A list of additional data required by the atom.

Methods (by generic)

  • to_numeric(HStack): Horizontally concatenate the values using cbind.

  • dim_from_args(HStack): The dimensions of the atom.

  • is_atom_log_log_convex(HStack): Is the atom log-log convex?

  • is_atom_log_log_concave(HStack): Is the atom log-log concave?

  • validate_args(HStack): Check all arguments have the same height.

  • graph_implementation(HStack): The graph implementation of the atom.

Slots

...

Expression objects or matrices. All arguments must have the same dimensions except for axis 2 (columns).


Huber Function

Description

The elementwise Huber function, Huber(x,M)=1Huber(x, M) = 1

2MxM22M|x|-M^2

for xM|x| \geq |M|

x2|x|^2

for xM.|x| \leq |M|.

Usage

huber(x, M = 1)

Arguments

x

An Expression, vector, or matrix.

M

(Optional) A positive scalar value representing the threshold. Defaults to 1.

Value

An Expression representing the Huber function evaluated at the input.

Examples

set.seed(11)
n <- 10
m <- 450
p <- 0.1    # Fraction of responses with sign flipped

# Generate problem data
beta_true <- 5*matrix(stats::rnorm(n), nrow = n)
X <- matrix(stats::rnorm(m*n), nrow = m, ncol = n)
y_true <- X %*% beta_true
eps <- matrix(stats::rnorm(m), nrow = m)

# Randomly flip sign of some responses
factor <- 2*rbinom(m, size = 1, prob = 1-p) - 1
y <- factor * y_true + eps

# Huber regression
beta <- Variable(n)
obj <- sum(huber(y - X %*% beta, 1))
prob <- Problem(Minimize(obj))
result <- solve(prob)
result$getValue(beta)

The Huber class.

Description

This class represents the elementwise Huber function, Huber(x,M=1)Huber(x, M = 1)

2MxM22M|x|-M^2

for xM|x| \geq |M|

x2|x|^2

for xM.|x| \leq |M|.

Usage

Huber(x, M = 1)

## S4 method for signature 'Huber'
to_numeric(object, values)

## S4 method for signature 'Huber'
sign_from_args(object)

## S4 method for signature 'Huber'
is_atom_convex(object)

## S4 method for signature 'Huber'
is_atom_concave(object)

## S4 method for signature 'Huber'
is_incr(object, idx)

## S4 method for signature 'Huber'
is_decr(object, idx)

## S4 method for signature 'Huber'
is_quadratic(object)

## S4 method for signature 'Huber'
get_data(object)

## S4 method for signature 'Huber'
validate_args(object)

## S4 method for signature 'Huber'
.grad(object, values)

Arguments

x

An Expression object.

M

A positive scalar value representing the threshold. Defaults to 1.

object

A Huber object.

values

A list of numeric values for the arguments

idx

An index into the atom.

Methods (by generic)

  • to_numeric(Huber): The Huber function evaluted elementwise on the input value.

  • sign_from_args(Huber): The atom is positive.

  • is_atom_convex(Huber): The atom is convex.

  • is_atom_concave(Huber): The atom is not concave.

  • is_incr(Huber): A logical value indicating whether the atom is weakly increasing.

  • is_decr(Huber): A logical value indicating whether the atom is weakly decreasing.

  • is_quadratic(Huber): The atom is quadratic if x is affine.

  • get_data(Huber): A list containing the parameter M.

  • validate_args(Huber): Check that M is a non-negative constant.

  • .grad(Huber): Gives the (sub/super)gradient of the atom w.r.t. each variable

Slots

x

An Expression or numeric constant.

M

A positive scalar value representing the threshold. Defaults to 1.


Identification Number

Description

A unique identification number used internally to keep track of variables and constraints. Should not be modified by the user.

Usage

id(object)

Arguments

object

A Variable or Constraint object.

Value

A non-negative integer identifier.

See Also

get_id setIdCounter

Examples

x <- Variable()
constr <- (x >= 5)
id(x)
id(constr)

The Imag class.

Description

This class represents the imaginary part of an expression.

Usage

Imag(expr)

## S4 method for signature 'Imag'
to_numeric(object, values)

## S4 method for signature 'Imag'
dim_from_args(object)

## S4 method for signature 'Imag'
is_imag(object)

## S4 method for signature 'Imag'
is_complex(object)

## S4 method for signature 'Imag'
is_symmetric(object)

Arguments

expr

An Expression representing a vector or matrix.

object

An Imag object.

values

A list of arguments to the atom.

Methods (by generic)

  • to_numeric(Imag): The imaginary part of the given value.

  • dim_from_args(Imag): The dimensions of the atom.

  • is_imag(Imag): Is the atom imaginary?

  • is_complex(Imag): Is the atom complex valued?

  • is_symmetric(Imag): Is the atom symmetric?

Slots

expr

An Expression representing a vector or matrix.


Import Solver

Description

Import the R library that interfaces with the specified solver.

Usage

import_solver(solver)

Arguments

solver

A ReductionSolver object.

Examples

import_solver(ECOS())
import_solver(SCS())

List installed solvers

Description

List available solvers, taking currently blacklisted solvers into account.

Usage

installed_solvers()

add_to_solver_blacklist(solvers)

remove_from_solver_blacklist(solvers)

set_solver_blacklist(solvers)

Arguments

solvers

a character vector of solver names, default character(0)

Value

The names of all the installed solvers as a character vector.

The current blacklist (character vector), invisibly.

Functions

  • add_to_solver_blacklist(): Add to solver blacklist, useful for temporarily disabling a solver

  • remove_from_solver_blacklist(): Remove solvers from blacklist

  • set_solver_blacklist(): Set solver blacklist to a value


Reciprocal Function

Description

The elementwise reciprocal function, 1x\frac{1}{x}

Usage

inv_pos(x)

Arguments

x

An Expression, vector, or matrix.

Value

An Expression representing the reciprocal of the input.

Examples

A <- Variable(2,2)
val <- cbind(c(1,2), c(3,4))
prob <- Problem(Minimize(inv_pos(A)[1,2]), list(A == val))
result <- solve(prob)
result$value

The InverseData class.

Description

This class represents the data encoding an optimization problem.


Return Original Solution

Description

Returns a solution to the original problem given the inverse data.

Usage

invert(object, solution, inverse_data)

Arguments

object

A Reduction object.

solution

A Solution to a problem that generated inverse_data.

inverse_data

A InverseData object encoding the original problem.

Value

A Solution to the original problem.


DCP Compliance

Description

Determine if a problem or expression complies with the disciplined convex programming rules.

Usage

is_dcp(object)

Arguments

object

A Problem or Expression object.

Value

A logical value indicating whether the problem or expression is DCP compliant, i.e. no unknown curvatures.

Examples

x <- Variable()
prob <- Problem(Minimize(x^2), list(x >= 5))
is_dcp(prob)
solve(prob)

DGP Compliance

Description

Determine if a problem or expression complies with the disciplined geometric programming rules.

Usage

is_dgp(object)

Arguments

object

A Problem or Expression object.

Value

A logical value indicating whether the problem or expression is DCP compliant, i.e. no unknown curvatures.

Examples

x <- Variable(pos = TRUE)
y <- Variable(pos = TRUE)
prob <- Problem(Minimize(x*y), list(x >= 5, y >= 5))
is_dgp(prob)
solve(prob, gp = TRUE)

Is Problem Mixed Integer?

Description

Determine if a problem is a mixed-integer program.

Usage

is_mixed_integer(object)

Arguments

object

A Problem object.

Value

A logical value indicating whether the problem is a mixed-integer program


Is Problem a QP?

Description

Determine if a problem is a quadratic program.

Usage

is_qp(object)

Arguments

object

A Problem object.

Value

A logical value indicating whether the problem is a quadratic program.


Is the constraint a stuffed cone constraint?

Description

Is the constraint a stuffed cone constraint?

Usage

is_stuffed_cone_constraint(constraint)

Arguments

constraint

A Constraint object.

Value

Is the constraint a stuffed-cone constraint?


Is the objective a stuffed cone objective?

Description

Is the objective a stuffed cone objective?

Usage

is_stuffed_cone_objective(objective)

Arguments

objective

An Objective object.

Value

Is the objective a stuffed-cone objective?


Is the QP objective stuffed?

Description

Is the QP objective stuffed?

Usage

is_stuffed_qp_objective(objective)

Arguments

objective

A Minimize or Maximize object representing the optimization objective.

Value

Is the objective a stuffed QP?


Kullback-Leibler Divergence

Description

The elementwise Kullback-Leibler divergence, xlog(x/y)x+yx\log(x/y) - x + y.

Usage

kl_div(x, y)

Arguments

x

An Expression, vector, or matrix.

y

An Expression, vector, or matrix.

Value

An Expression representing the KL-divergence of the input.

Examples

n <- 5
alpha <- seq(10, n-1+10)/n
beta <- seq(10, n-1+10)/n
P_tot <- 0.5
W_tot <- 1.0

P <- Variable(n)
W <- Variable(n)
R <- kl_div(alpha*W, alpha*(W + beta*P)) - alpha*beta*P
obj <- sum(R)
constr <- list(P >= 0, W >= 0, sum(P) == P_tot, sum(W) == W_tot)
prob <- Problem(Minimize(obj), constr)
result <- solve(prob)

result$value
result$getValue(P)
result$getValue(W)

The KLDiv class.

Description

The elementwise KL-divergence xlog(x/y)x+yx\log(x/y) - x + y.

Usage

KLDiv(x, y)

## S4 method for signature 'KLDiv'
to_numeric(object, values)

## S4 method for signature 'KLDiv'
sign_from_args(object)

## S4 method for signature 'KLDiv'
is_atom_convex(object)

## S4 method for signature 'KLDiv'
is_atom_concave(object)

## S4 method for signature 'KLDiv'
is_incr(object, idx)

## S4 method for signature 'KLDiv'
is_decr(object, idx)

## S4 method for signature 'KLDiv'
.grad(object, values)

## S4 method for signature 'KLDiv'
.domain(object)

Arguments

x

An Expression or numeric constant.

y

An Expression or numeric constant.

object

A KLDiv object.

values

A list of numeric values for the arguments

idx

An index into the atom.

Methods (by generic)

  • to_numeric(KLDiv): The KL-divergence evaluted elementwise on the input value.

  • sign_from_args(KLDiv): The atom is positive.

  • is_atom_convex(KLDiv): The atom is convex.

  • is_atom_concave(KLDiv): The atom is not concave.

  • is_incr(KLDiv): The atom is not monotonic in any argument.

  • is_decr(KLDiv): The atom is not monotonic in any argument.

  • .grad(KLDiv): Gives the (sub/super)gradient of the atom w.r.t. each variable

  • .domain(KLDiv): Returns constraints describng the domain of the node

Slots

x

An Expression or numeric constant.

y

An Expression or numeric constant.


The Kron class.

Description

This class represents the kronecker product.

Usage

Kron(lh_exp, rh_exp)

## S4 method for signature 'Kron'
to_numeric(object, values)

## S4 method for signature 'Kron'
validate_args(object)

## S4 method for signature 'Kron'
dim_from_args(object)

## S4 method for signature 'Kron'
sign_from_args(object)

## S4 method for signature 'Kron'
is_incr(object, idx)

## S4 method for signature 'Kron'
is_decr(object, idx)

## S4 method for signature 'Kron'
graph_implementation(object, arg_objs, dim, data = NA_real_)

Arguments

lh_exp

An Expression or numeric constant representing the left-hand matrix.

rh_exp

An Expression or numeric constant representing the right-hand matrix.

object

A Kron object.

values

A list of arguments to the atom.

idx

An index into the atom.

arg_objs

A list of linear expressions for each argument.

dim

A vector with two elements representing the size of the resulting expression.

data

A list of additional data required by the atom.

Methods (by generic)

  • to_numeric(Kron): The kronecker product of the two values.

  • validate_args(Kron): Check both arguments are vectors and the first is a constant.

  • dim_from_args(Kron): The dimensions of the atom.

  • sign_from_args(Kron): The sign of the atom.

  • is_incr(Kron): Is the left-hand expression positive?

  • is_decr(Kron): Is the right-hand expression negative?

  • graph_implementation(Kron): The graph implementation of the atom.

Slots

lh_exp

An Expression or numeric constant representing the left-hand matrix.

rh_exp

An Expression or numeric constant representing the right-hand matrix.


Kronecker Product

Description

The generalized kronecker product of two matrices.

Usage

## S4 method for signature 'Expression,ANY'
kronecker(X, Y, FUN = "*", make.dimnames = FALSE, ...)

## S4 method for signature 'ANY,Expression'
kronecker(X, Y, FUN = "*", make.dimnames = FALSE, ...)

Arguments

X

An Expression or matrix.

Y

An Expression or matrix.

FUN

Hardwired to "*" for the kronecker product.

make.dimnames

(Unimplemented) Dimension names are not supported in Expression objects.

...

(Unimplemented) Optional arguments.

Value

An Expression that represents the kronecker product.

Examples

X <- cbind(c(1,2), c(3,4))
Y <- Variable(2,2)
val <- cbind(c(5,6), c(7,8))

obj <- X %x% Y
prob <- Problem(Minimize(kronecker(X,Y)[1,1]), list(Y == val))
result <- solve(prob)
result$value
result$getValue(kronecker(X,Y))

Maximum Eigenvalue

Description

The maximum eigenvalue of a matrix, λmax(A)\lambda_{\max}(A).

Usage

lambda_max(A)

Arguments

A

An Expression or matrix.

Value

An Expression representing the maximum eigenvalue of the input.

Examples

A <- Variable(2,2)
prob <- Problem(Minimize(lambda_max(A)), list(A >= 2))
result <- solve(prob)
result$value
result$getValue(A)

obj <- Maximize(A[2,1] - A[1,2])
prob <- Problem(obj, list(lambda_max(A) <= 100, A[1,1] == 2, A[2,2] == 2, A[2,1] == 2))
result <- solve(prob)
result$value
result$getValue(A)

Minimum Eigenvalue

Description

The minimum eigenvalue of a matrix, λmin(A)\lambda_{\min}(A).

Usage

lambda_min(A)

Arguments

A

An Expression or matrix.

Value

An Expression representing the minimum eigenvalue of the input.

Examples

A <- Variable(2,2)
val <- cbind(c(5,7), c(7,-3))
prob <- Problem(Maximize(lambda_min(A)), list(A == val))
result <- solve(prob)
result$value
result$getValue(A)

Sum of Largest Eigenvalues

Description

The sum of the largest kk eigenvalues of a matrix.

Usage

lambda_sum_largest(A, k)

Arguments

A

An Expression or matrix.

k

The number of eigenvalues to sum over.

Value

An Expression representing the sum of the largest k eigenvalues of the input.

Examples

C <- Variable(3,3)
val <- cbind(c(1,2,3), c(2,4,5), c(3,5,6))
prob <- Problem(Minimize(lambda_sum_largest(C,2)), list(C == val))
result <- solve(prob)
result$value
result$getValue(C)

Sum of Smallest Eigenvalues

Description

The sum of the smallest kk eigenvalues of a matrix.

Usage

lambda_sum_smallest(A, k)

Arguments

A

An Expression or matrix.

k

The number of eigenvalues to sum over.

Value

An Expression representing the sum of the smallest k eigenvalues of the input.

Examples

C <- Variable(3,3)
val <- cbind(c(1,2,3), c(2,4,5), c(3,5,6))
prob <- Problem(Maximize(lambda_sum_smallest(C,2)), list(C == val))
result <- solve(prob)
result$value
result$getValue(C)

The LambdaMax class.

Description

The maximum eigenvalue of a matrix, λmax(A)\lambda_{\max}(A).

Usage

LambdaMax(A)

## S4 method for signature 'LambdaMax'
to_numeric(object, values)

## S4 method for signature 'LambdaMax'
.domain(object)

## S4 method for signature 'LambdaMax'
.grad(object, values)

## S4 method for signature 'LambdaMax'
validate_args(object)

## S4 method for signature 'LambdaMax'
dim_from_args(object)

## S4 method for signature 'LambdaMax'
sign_from_args(object)

## S4 method for signature 'LambdaMax'
is_atom_convex(object)

## S4 method for signature 'LambdaMax'
is_atom_concave(object)

## S4 method for signature 'LambdaMax'
is_incr(object, idx)

## S4 method for signature 'LambdaMax'
is_decr(object, idx)

Arguments

A

An Expression or numeric matrix.

object

A LambdaMax object.

values

A list of arguments to the atom.

idx

An index into the atom.

Methods (by generic)

  • to_numeric(LambdaMax): The largest eigenvalue of A. Requires that A be symmetric.

  • .domain(LambdaMax): Returns the constraints describing the domain of the atom.

  • .grad(LambdaMax): Gives the (sub/super)gradient of the atom with respect to each argument. Matrix expressions are vectorized, so the gradient is a matrix.

  • validate_args(LambdaMax): Check that A is square.

  • dim_from_args(LambdaMax): The atom is a scalar.

  • sign_from_args(LambdaMax): The sign of the atom is unknown.

  • is_atom_convex(LambdaMax): The atom is convex.

  • is_atom_concave(LambdaMax): The atom is not concave.

  • is_incr(LambdaMax): The atom is not monotonic in any argument.

  • is_decr(LambdaMax): The atom is not monotonic in any argument.

Slots

A

An Expression or numeric matrix.


The LambdaMin atom.

Description

The minimum eigenvalue of a matrix, λmin(A)\lambda_{\min}(A).

Usage

LambdaMin(A)

Arguments

A

An Expression or numeric matrix.

Value

Returns the minimum eigenvalue of a matrix.


The LambdaSumLargest class.

Description

This class represents the sum of the k largest eigenvalues of a matrix.

Usage

LambdaSumLargest(A, k)

## S4 method for signature 'LambdaSumLargest'
allow_complex(object)

## S4 method for signature 'LambdaSumLargest'
to_numeric(object, values)

## S4 method for signature 'LambdaSumLargest'
validate_args(object)

## S4 method for signature 'LambdaSumLargest'
get_data(object)

## S4 method for signature 'LambdaSumLargest'
.grad(object, values)

Arguments

A

An Expression or numeric matrix.

k

A positive integer.

object

A LambdaSumLargest object.

values

A list of numeric values for the arguments

Methods (by generic)

  • allow_complex(LambdaSumLargest): Does the atom handle complex numbers?

  • to_numeric(LambdaSumLargest): Returns the largest eigenvalue of A, which must be symmetric.

  • validate_args(LambdaSumLargest): Verify that the argument A is square.

  • get_data(LambdaSumLargest): Returns the parameter k.

  • .grad(LambdaSumLargest): Gives the (sub/super)gradient of the atom w.r.t. each variable

Slots

k

A positive integer.


The LambdaSumSmallest atom.

Description

This class represents the sum of the k smallest eigenvalues of a matrix.

Usage

LambdaSumSmallest(A, k)

Arguments

A

An Expression or numeric matrix.

k

A positive integer.

Value

Returns the sum of the k smallest eigenvalues of a matrix.


Attributes of an Expression Leaf

Description

Determine if an expression is positive or negative.

Usage

is_pos(object)

is_neg(object)

Arguments

object

A Leaf object.

Value

A logical value.


The Leaf class.

Description

This class represents a leaf node, i.e. a Variable, Constant, or Parameter.

Usage

## S4 method for signature 'Leaf'
get_data(object)

## S4 method for signature 'Leaf'
dim(x)

## S4 method for signature 'Leaf'
variables(object)

## S4 method for signature 'Leaf'
parameters(object)

## S4 method for signature 'Leaf'
constants(object)

## S4 method for signature 'Leaf'
atoms(object)

## S4 method for signature 'Leaf'
is_convex(object)

## S4 method for signature 'Leaf'
is_concave(object)

## S4 method for signature 'Leaf'
is_log_log_convex(object)

## S4 method for signature 'Leaf'
is_log_log_concave(object)

## S4 method for signature 'Leaf'
is_nonneg(object)

## S4 method for signature 'Leaf'
is_nonpos(object)

## S4 method for signature 'Leaf'
is_pos(object)

## S4 method for signature 'Leaf'
is_neg(object)

## S4 method for signature 'Leaf'
is_hermitian(object)

## S4 method for signature 'Leaf'
is_symmetric(object)

## S4 method for signature 'Leaf'
is_imag(object)

## S4 method for signature 'Leaf'
is_complex(object)

## S4 method for signature 'Leaf'
domain(object)

## S4 method for signature 'Leaf'
project(object, value)

## S4 method for signature 'Leaf'
project_and_assign(object, value)

## S4 method for signature 'Leaf'
value(object)

## S4 replacement method for signature 'Leaf'
value(object) <- value

## S4 method for signature 'Leaf'
validate_val(object, val)

## S4 method for signature 'Leaf'
is_psd(object)

## S4 method for signature 'Leaf'
is_nsd(object)

## S4 method for signature 'Leaf'
is_quadratic(object)

## S4 method for signature 'Leaf'
is_pwl(object)

Arguments

object, x

A Leaf object.

value

A numeric scalar, vector, or matrix.

val

The assigned value.

Methods (by generic)

  • get_data(Leaf): Leaves are not copied.

  • dim(Leaf): The dimensions of the leaf node.

  • variables(Leaf): List of Variable objects in the leaf node.

  • parameters(Leaf): List of Parameter objects in the leaf node.

  • constants(Leaf): List of Constant objects in the leaf node.

  • atoms(Leaf): List of Atom objects in the leaf node.

  • is_convex(Leaf): A logical value indicating whether the leaf node is convex.

  • is_concave(Leaf): A logical value indicating whether the leaf node is concave.

  • is_log_log_convex(Leaf): Is the expression log-log convex?

  • is_log_log_concave(Leaf): Is the expression log-log concave?

  • is_nonneg(Leaf): A logical value indicating whether the leaf node is nonnegative.

  • is_nonpos(Leaf): A logical value indicating whether the leaf node is nonpositive.

  • is_pos(Leaf): Is the expression positive?

  • is_neg(Leaf): Is the expression negative?

  • is_hermitian(Leaf): A logical value indicating whether the leaf node is hermitian.

  • is_symmetric(Leaf): A logical value indicating whether the leaf node is symmetric.

  • is_imag(Leaf): A logical value indicating whether the leaf node is imaginary.

  • is_complex(Leaf): A logical value indicating whether the leaf node is complex.

  • domain(Leaf): A list of constraints describing the closure of the region where the leaf node is finite. Default is the full domain.

  • project(Leaf): Project value onto the attribute set of the leaf.

  • project_and_assign(Leaf): Project and assign a value to the leaf.

  • value(Leaf): Get the value of the leaf.

  • value(Leaf) <- value: Set the value of the leaf.

  • validate_val(Leaf): Check that val satisfies symbolic attributes of leaf.

  • is_psd(Leaf): A logical value indicating whether the leaf node is a positive semidefinite matrix.

  • is_nsd(Leaf): A logical value indicating whether the leaf node is a negative semidefinite matrix.

  • is_quadratic(Leaf): Leaf nodes are always quadratic.

  • is_pwl(Leaf): Leaf nodes are always piecewise linear.

Slots

id

(Internal) A unique integer identification number used internally.

dim

The dimensions of the leaf.

value

The numeric value of the leaf.

nonneg

Is the leaf nonnegative?

nonpos

Is the leaf nonpositive?

complex

Is the leaf a complex number?

imag

Is the leaf imaginary?

symmetric

Is the leaf a symmetric matrix?

diag

Is the leaf a diagonal matrix?

PSD

Is the leaf positive semidefinite?

NSD

Is the leaf negative semidefinite?

hermitian

Is the leaf hermitian?

boolean

Is the leaf boolean? Is the variable boolean? May be TRUE = entire leaf is boolean, FALSE = entire leaf is not boolean, or a vector of indices which should be constrained as boolean, where each index is a vector of length exactly equal to the length of dim.

integer

Is the leaf integer? The semantics are the same as the boolean argument.

sparsity

A matrix representing the fixed sparsity pattern of the leaf.

pos

Is the leaf strictly positive?

neg

Is the leaf strictly negative?


Affine Approximation to an Expression

Description

Gives an elementwise lower (upper) bound for convex (concave) expressions that is tight at the current variable/parameter values. No guarantees for non-DCP expressions.

Usage

linearize(expr)

Arguments

expr

An Expression to linearize.

Details

If f and g are convex, the objective f-g can be (heuristically) minimized using the implementation below of the convex-concave method:

for(iters in 1:N) solve(Problem(Minimize(f - linearize(g))))

Value

An affine expression or NA if cannot be linearized.


A Class Union of List and Constraint

Description

A Class Union of List and Constraint

Usage

## S4 method for signature 'ListORConstr'
id(object)

Arguments

object

A list or Constraint object.

Methods (by generic)

  • id(ListORConstr): Returns the ID associated with the list or constraint.


Log-Determinant

Description

The natural logarithm of the determinant of a matrix, logdet(A)\log\det(A).

Usage

log_det(A)

Arguments

A

An Expression or matrix.

Value

An Expression representing the log-determinant of the input.

Examples

x <- t(data.frame(c(0.55, 0.25, -0.2, -0.25, -0.0, 0.4),
                  c(0.0, 0.35, 0.2, -0.1, -0.3, -0.2)))
n <- nrow(x)
m <- ncol(x)

A <- Variable(n,n)
b <- Variable(n)
obj <- Maximize(log_det(A))
constr <- lapply(1:m, function(i) { p_norm(A %*% as.matrix(x[,i]) + b) <= 1 })
prob <- Problem(obj, constr)
result <- solve(prob)
result$value

Log-Log Curvature of Expression

Description

The log-log curvature of an expression.

The log-log curvature of an expression.

Usage

log_log_curvature(object)

## S4 method for signature 'Expression'
log_log_curvature(object)

Arguments

object

An Expression object.

Value

A string indicating the log-log curvature of the expression, either "LOG_LOG_CONSTANT", "LOG_LOG_AFFINE", "LOG_LOG_CONVEX, "LOG_LOG_CONCAVE", or "UNKNOWN".

A string indicating the log-log curvature of the expression, either "LOG_LOG_CONSTANT", "LOG_LOG_AFFINE", "LOG_LOG_CONVEX", "LOG_LOG_CONCAVE", or "UNKNOWN".


Log-Log Curvature of an Atom

Description

Determine if an atom is log-log convex, concave, or affine.

Usage

is_atom_log_log_convex(object)

is_atom_log_log_concave(object)

is_atom_log_log_affine(object)

Arguments

object

A Atom object.

Value

A logical value.


Log-Log Curvature Properties

Description

Determine if an expression is log-log constant, log-log affine, log-log convex, or log-log concave.

Usage

is_log_log_constant(object)

is_log_log_affine(object)

is_log_log_convex(object)

is_log_log_concave(object)

Arguments

object

An Expression object.

Value

A logical value.


Log-Sum-Exponential

Description

The natural logarithm of the sum of the elementwise exponential, logi=1nexi\log\sum_{i=1}^n e^{x_i}.

Usage

log_sum_exp(x, axis = NA_real_, keepdims = FALSE)

Arguments

x

An Expression, vector, or matrix.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.

keepdims

(Optional) Should dimensions be maintained when applying the atom along an axis? If FALSE, result will be collapsed into an nx1n x 1 column vector. The default is FALSE.

Value

An Expression representing the log-sum-exponential of the input.

Examples

A <- Variable(2,2)
val <- cbind(c(5,7), c(0,-3))
prob <- Problem(Minimize(log_sum_exp(A)), list(A == val))
result <- solve(prob)
result$getValue(A)

The Log class.

Description

This class represents the elementwise natural logarithm log(x)\log(x).

Usage

Log(x)

## S4 method for signature 'Log'
to_numeric(object, values)

## S4 method for signature 'Log'
sign_from_args(object)

## S4 method for signature 'Log'
is_atom_convex(object)

## S4 method for signature 'Log'
is_atom_concave(object)

## S4 method for signature 'Log'
is_atom_log_log_convex(object)

## S4 method for signature 'Log'
is_atom_log_log_concave(object)

## S4 method for signature 'Log'
is_incr(object, idx)

## S4 method for signature 'Log'
is_decr(object, idx)

## S4 method for signature 'Log'
.grad(object, values)

## S4 method for signature 'Log'
.domain(object)

Arguments

x

An Expression or numeric constant.

object

A Log object.

values

A list of numeric values for the arguments

idx

An index into the atom.

Methods (by generic)

  • to_numeric(Log): The elementwise natural logarithm of the input value.

  • sign_from_args(Log): The sign of the atom is unknown.

  • is_atom_convex(Log): The atom is not convex.

  • is_atom_concave(Log): The atom is concave.

  • is_atom_log_log_convex(Log): Is the atom log-log convex?

  • is_atom_log_log_concave(Log): Is the atom log-log concave?

  • is_incr(Log): The atom is weakly increasing.

  • is_decr(Log): The atom is not weakly decreasing.

  • .grad(Log): Gives the (sub/super)gradient of the atom w.r.t. each variable

  • .domain(Log): Returns constraints describng the domain of the node

Slots

x

An Expression or numeric constant.


Logarithms

Description

The elementwise logarithm. log computes the logarithm, by default the natural logarithm, log10 computes the common (i.e., base 10) logarithm, and log2 computes the binary (i.e., base 2) logarithms. The general form log(x, base) computes logarithms with base base. log1p computes elementwise the function log(1+x)\log(1+x).

Usage

## S4 method for signature 'Expression'
log(x, base = base::exp(1))

## S4 method for signature 'Expression'
log10(x)

## S4 method for signature 'Expression'
log2(x)

## S4 method for signature 'Expression'
log1p(x)

Arguments

x

An Expression.

base

(Optional) A positive number that is the base with respect to which the logarithm is computed. Defaults to ee.

Value

An Expression representing the exponentiated input.

Examples

# Log in objective
x <- Variable(2)
obj <- Maximize(sum(log(x)))
constr <- list(x <= matrix(c(1, exp(1))))
prob <- Problem(obj, constr)
result <- solve(prob)
result$value
result$getValue(x)

# Log in constraint
obj <- Minimize(sum(x))
constr <- list(log2(x) >= 0, x <= matrix(c(1,1)))
prob <- Problem(obj, constr)
result <- solve(prob)
result$value
result$getValue(x)

# Index into log
obj <- Maximize(log10(x)[2])
constr <- list(x <= matrix(c(1, exp(1))))
prob <- Problem(obj, constr)
result <- solve(prob)
result$value

# Scalar log
obj <- Maximize(log1p(x[2]))
constr <- list(x <= matrix(c(1, exp(1))))
prob <- Problem(obj, constr)
result <- solve(prob)
result$value

The Log1p class.

Description

This class represents the elementwise operation log(1+x)\log(1 + x).

Usage

Log1p(x)

## S4 method for signature 'Log1p'
to_numeric(object, values)

## S4 method for signature 'Log1p'
sign_from_args(object)

## S4 method for signature 'Log1p'
.grad(object, values)

## S4 method for signature 'Log1p'
.domain(object)

Arguments

x

An Expression or numeric constant.

object

A Log1p object.

values

A list of numeric values for the arguments

Methods (by generic)

  • to_numeric(Log1p): The elementwise natural logarithm of one plus the input value.

  • sign_from_args(Log1p): The sign of the atom.

  • .grad(Log1p): Gives the (sub/super)gradient of the atom w.r.t. each variable

  • .domain(Log1p): Returns constraints describng the domain of the node

Slots

x

An Expression or numeric constant.


The LogDet class.

Description

The natural logarithm of the determinant of a matrix, logdet(A)\log\det(A).

Usage

LogDet(A)

## S4 method for signature 'LogDet'
to_numeric(object, values)

## S4 method for signature 'LogDet'
validate_args(object)

## S4 method for signature 'LogDet'
dim_from_args(object)

## S4 method for signature 'LogDet'
sign_from_args(object)

## S4 method for signature 'LogDet'
is_atom_convex(object)

## S4 method for signature 'LogDet'
is_atom_concave(object)

## S4 method for signature 'LogDet'
is_incr(object, idx)

## S4 method for signature 'LogDet'
is_decr(object, idx)

## S4 method for signature 'LogDet'
.grad(object, values)

## S4 method for signature 'LogDet'
.domain(object)

Arguments

A

An Expression or numeric matrix.

object

A LogDet object.

values

A list of numeric values for the arguments

idx

An index into the atom.

Methods (by generic)

  • to_numeric(LogDet): The log-determinant of SDP matrix A. This is the sum of logs of the eigenvalues and is equivalent to the nuclear norm of the matrix logarithm of A.

  • validate_args(LogDet): Check that A is square.

  • dim_from_args(LogDet): The atom is a scalar.

  • sign_from_args(LogDet): The atom is non-negative.

  • is_atom_convex(LogDet): The atom is not convex.

  • is_atom_concave(LogDet): The atom is concave.

  • is_incr(LogDet): The atom is not monotonic in any argument.

  • is_decr(LogDet): The atom is not monotonic in any argument.

  • .grad(LogDet): Gives the (sub/super)gradient of the atom w.r.t. each variable

  • .domain(LogDet): Returns constraints describing the domain of the node

Slots

A

An Expression or numeric matrix.


Logistic Function

Description

The elementwise logistic function, log(1+ex)\log(1 + e^x). This is a special case of log(sum(exp)) that evaluates to a vector rather than to a scalar, which is useful for logistic regression.

Usage

logistic(x)

Arguments

x

An Expression, vector, or matrix.

Value

An Expression representing the logistic function evaluated at the input.

Examples

set.seed(92)
n <- 20
m <- 1000
sigma <- 45

beta_true <- stats::rnorm(n)
idxs <- sample(n, size = 0.8*n, replace = FALSE)
beta_true[idxs] <- 0
X <- matrix(stats::rnorm(m*n, 0, 5), nrow = m, ncol = n)
y <- sign(X %*% beta_true + stats::rnorm(m, 0, sigma))

beta <- Variable(n)
X_sign <- apply(X, 2, function(x) { ifelse(y <= 0, -1, 1) * x })
obj <- -sum(logistic(-X[y <= 0,] %*% beta)) - sum(logistic(X[y == 1,] %*% beta))
prob <- Problem(Maximize(obj))
result <- solve(prob)

log_odds <- result$getValue(X %*% beta)
beta_res <- result$getValue(beta)
y_probs <- 1/(1 + exp(-X %*% beta_res))
log(y_probs/(1 - y_probs))

The Logistic class.

Description

This class represents the elementwise operation log(1+ex)\log(1 + e^x). This is a special case of log(sum(exp)) that evaluates to a vector rather than to a scalar, which is useful for logistic regression.

Usage

Logistic(x)

## S4 method for signature 'Logistic'
to_numeric(object, values)

## S4 method for signature 'Logistic'
sign_from_args(object)

## S4 method for signature 'Logistic'
is_atom_convex(object)

## S4 method for signature 'Logistic'
is_atom_concave(object)

## S4 method for signature 'Logistic'
is_incr(object, idx)

## S4 method for signature 'Logistic'
is_decr(object, idx)

## S4 method for signature 'Logistic'
.grad(object, values)

Arguments

x

An Expression or numeric constant.

object

A Logistic object.

values

A list of numeric values for the arguments

idx

An index into the atom.

Methods (by generic)

  • to_numeric(Logistic): Evaluates e^x elementwise, adds one, and takes the natural logarithm.

  • sign_from_args(Logistic): The atom is positive.

  • is_atom_convex(Logistic): The atom is convex.

  • is_atom_concave(Logistic): The atom is not concave.

  • is_incr(Logistic): The atom is weakly increasing.

  • is_decr(Logistic): The atom is not weakly decreasing.

  • .grad(Logistic): Gives the (sub/super)gradient of the atom w.r.t. each variable

Slots

x

An Expression or numeric constant.


The LogSumExp class.

Description

The natural logarithm of the sum of the elementwise exponential, logi=1nexi\log\sum_{i=1}^n e^{x_i}.

Usage

LogSumExp(x, axis = NA_real_, keepdims = FALSE)

## S4 method for signature 'LogSumExp'
to_numeric(object, values)

## S4 method for signature 'LogSumExp'
.grad(object, values)

## S4 method for signature 'LogSumExp'
.column_grad(object, value)

## S4 method for signature 'LogSumExp'
sign_from_args(object)

## S4 method for signature 'LogSumExp'
is_atom_convex(object)

## S4 method for signature 'LogSumExp'
is_atom_concave(object)

## S4 method for signature 'LogSumExp'
is_incr(object, idx)

## S4 method for signature 'LogSumExp'
is_decr(object, idx)

Arguments

x

An Expression representing a vector or matrix.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.

keepdims

(Optional) Should dimensions be maintained when applying the atom along an axis? If FALSE, result will be collapsed into an nx1n x 1 column vector. The default is FALSE.

object

A LogSumExp object.

values

A list of numeric values.

value

A numeric value.

idx

An index into the atom.

Methods (by generic)

  • to_numeric(LogSumExp): Evaluates exe^x elementwise, sums, and takes the natural log.

  • .grad(LogSumExp): Gives the (sub/super)gradient of the atom w.r.t. each variable

  • .column_grad(LogSumExp): Gives the (sub/super)gradient of the atom w.r.t. each column variable.

  • sign_from_args(LogSumExp): Returns sign (is positive, is negative) of the atom.

  • is_atom_convex(LogSumExp): The atom is convex.

  • is_atom_concave(LogSumExp): The atom is not concave.

  • is_incr(LogSumExp): The atom is weakly increasing in the index.

  • is_decr(LogSumExp): The atom is not weakly decreasing in the index.

Slots

x

An Expression representing a vector or matrix.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.

keepdims

(Optional) Should dimensions be maintained when applying the atom along an axis? If FALSE, result will be collapsed into an nx1n x 1 column vector. The default is FALSE.


Make a CSC sparse diagonal matrix

Description

Make a CSC sparse diagonal matrix

Usage

make_sparse_diagonal_matrix(size, diagonal = NULL)

Arguments

size

number of rows or columns

diagonal

if specified, the diagonal values, in which case size is ignored

Value

a compressed sparse column diagonal matrix


Matrix Fraction

Description

tr(XTP1X)tr(X^T P^{-1} X).

Usage

matrix_frac(X, P)

Arguments

X

An Expression or matrix. Must have the same number of rows as P.

P

An Expression or matrix. Must be an invertible square matrix.

Value

An Expression representing the matrix fraction evaluated at the input.

Examples

## Not run: 
set.seed(192)
m <- 100
n <- 80
r <- 70

A <- matrix(stats::rnorm(m*n), nrow = m, ncol = n)
b <- matrix(stats::rnorm(m), nrow = m, ncol = 1)
G <- matrix(stats::rnorm(r*n), nrow = r, ncol = n)
h <- matrix(stats::rnorm(r), nrow = r, ncol = 1)

# ||Ax-b||^2 = x^T (A^T A) x - 2(A^T b)^T x + ||b||^2
P <- t(A) %*% A
q <- -2 * t(A) %*% b
r <- t(b) %*% b
Pinv <- base::solve(P)

x <- Variable(n)
obj <- matrix_frac(x, Pinv) + t(q) %*% x + r
constr <- list(G %*% x == h)
prob <- Problem(Minimize(obj), constr)
result <- solve(prob)
result$value

## End(Not run)

Matrix Properties

Description

Determine if an expression is positive semidefinite, negative semidefinite, hermitian, and/or symmetric.

Usage

is_psd(object)

is_nsd(object)

is_hermitian(object)

is_symmetric(object)

Arguments

object

An Expression object.

Value

A logical value.


Matrix Trace

Description

The sum of the diagonal entries in a matrix.

Usage

matrix_trace(expr)

Arguments

expr

An Expression or matrix.

Value

An Expression representing the trace of the input.

Examples

C <- Variable(3,3)
val <- cbind(3:5, 6:8, 9:11)
prob <- Problem(Maximize(matrix_trace(C)), list(C == val))
result <- solve(prob)
result$value

The MatrixFrac class.

Description

The matrix fraction function tr(XTP1X)tr(X^T P^{-1} X).

Usage

MatrixFrac(X, P)

## S4 method for signature 'MatrixFrac'
allow_complex(object)

## S4 method for signature 'MatrixFrac'
to_numeric(object, values)

## S4 method for signature 'MatrixFrac'
validate_args(object)

## S4 method for signature 'MatrixFrac'
dim_from_args(object)

## S4 method for signature 'MatrixFrac'
sign_from_args(object)

## S4 method for signature 'MatrixFrac'
is_atom_convex(object)

## S4 method for signature 'MatrixFrac'
is_atom_concave(object)

## S4 method for signature 'MatrixFrac'
is_incr(object, idx)

## S4 method for signature 'MatrixFrac'
is_decr(object, idx)

## S4 method for signature 'MatrixFrac'
is_quadratic(object)

## S4 method for signature 'MatrixFrac'
is_qpwa(object)

## S4 method for signature 'MatrixFrac'
.domain(object)

## S4 method for signature 'MatrixFrac'
.grad(object, values)

Arguments

X

An Expression or numeric matrix.

P

An Expression or numeric matrix.

object

A MatrixFrac object.

values

A list of numeric values for the arguments

idx

An index into the atom.

Methods (by generic)

  • allow_complex(MatrixFrac): Does the atom handle complex numbers?

  • to_numeric(MatrixFrac): The trace of XTP1XX^TP^{-1}X.

  • validate_args(MatrixFrac): Check that the dimensions of x and P match.

  • dim_from_args(MatrixFrac): The atom is a scalar.

  • sign_from_args(MatrixFrac): The atom is positive.

  • is_atom_convex(MatrixFrac): The atom is convex.

  • is_atom_concave(MatrixFrac): The atom is not concave.

  • is_incr(MatrixFrac): The atom is not monotonic in any argument.

  • is_decr(MatrixFrac): The atom is not monotonic in any argument.

  • is_quadratic(MatrixFrac): True if x is affine and P is constant.

  • is_qpwa(MatrixFrac): True if x is piecewise linear and P is constant.

  • .domain(MatrixFrac): Returns constraints describing the domain of the node

  • .grad(MatrixFrac): Gives the (sub/super)gradient of the atom w.r.t. each variable

Slots

X

An Expression or numeric matrix.

P

An Expression or numeric matrix.


The MatrixStuffing class.

Description

The MatrixStuffing class.

Usage

## S4 method for signature 'MatrixStuffing,Problem'
perform(object, problem)

## S4 method for signature 'MatrixStuffing,Solution,InverseData'
invert(object, solution, inverse_data)

Arguments

object

A MatrixStuffing object.

problem

A Problem object to stuff; the arguments of every constraint must be affine.

solution

A Solution to a problem that generated the inverse data.

inverse_data

The data encoding the original problem.

Methods (by generic)

  • perform(object = MatrixStuffing, problem = Problem): Returns a stuffed problem. The returned problem is a minimization problem in which every constraint in the problem has affine arguments that are expressed in the form A

  • invert( object = MatrixStuffing, solution = Solution, inverse_data = InverseData ): Returns the solution to the original problem given the inverse_data.


Elementwise Maximum

Description

The elementwise maximum.

Usage

max_elemwise(arg1, arg2, ...)

Arguments

arg1

An Expression, vector, or matrix.

arg2

An Expression, vector, or matrix.

...

Additional Expression objects, vectors, or matrices.

Value

An Expression representing the elementwise maximum of the inputs.

Examples

c <- matrix(c(1,-1))
prob <- Problem(Minimize(max_elemwise(t(c), 2, 2 + t(c))[2]))
result <- solve(prob)
result$value

Maximum

Description

The maximum of an expression.

Usage

max_entries(x, axis = NA_real_, keepdims = FALSE)

## S3 method for class 'Expression'
max(..., na.rm = FALSE)

Arguments

x

An Expression, vector, or matrix.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.

keepdims

(Optional) Should dimensions be maintained when applying the atom along an axis? If FALSE, result will be collapsed into an nx1n x 1 column vector. The default is FALSE.

...

Numeric scalar, vector, matrix, or Expression objects.

na.rm

(Unimplemented) A logical value indicating whether missing values should be removed.

Value

An Expression representing the maximum of the input.

Examples

x <- Variable(2)
val <- matrix(c(-5,-10))
prob <- Problem(Minimize(max_entries(x)), list(x == val))
result <- solve(prob)
result$value

A <- Variable(2,2)
val <- rbind(c(-5,2), c(-3,1))
prob <- Problem(Minimize(max_entries(A, axis = 1)[2,1]), list(A == val))
result <- solve(prob)
result$value
x <- Variable(2)
val <- matrix(c(-5,-10))
prob <- Problem(Minimize(max_entries(x)), list(x == val))
result <- solve(prob)
result$value

A <- Variable(2,2)
val <- rbind(c(-5,2), c(-3,1))
prob <- Problem(Minimize(max_entries(A, axis = 1)[2,1]), list(A == val))
result <- solve(prob)
result$value

The MaxElemwise class.

Description

This class represents the elementwise maximum.

Usage

MaxElemwise(arg1, arg2, ...)

## S4 method for signature 'MaxElemwise'
to_numeric(object, values)

## S4 method for signature 'MaxElemwise'
sign_from_args(object)

## S4 method for signature 'MaxElemwise'
is_atom_convex(object)

## S4 method for signature 'MaxElemwise'
is_atom_concave(object)

## S4 method for signature 'MaxElemwise'
is_atom_log_log_convex(object)

## S4 method for signature 'MaxElemwise'
is_atom_log_log_concave(object)

## S4 method for signature 'MaxElemwise'
is_incr(object, idx)

## S4 method for signature 'MaxElemwise'
is_decr(object, idx)

## S4 method for signature 'MaxElemwise'
is_pwl(object)

## S4 method for signature 'MaxElemwise'
.grad(object, values)

Arguments

arg1

The first Expression in the maximum operation.

arg2

The second Expression in the maximum operation.

...

Additional Expression objects in the maximum operation.

object

A MaxElemwise object.

values

A list of numeric values for the arguments

idx

An index into the atom.

Methods (by generic)

  • to_numeric(MaxElemwise): The elementwise maximum.

  • sign_from_args(MaxElemwise): The sign of the atom.

  • is_atom_convex(MaxElemwise): The atom is convex.

  • is_atom_concave(MaxElemwise): The atom is not concave.

  • is_atom_log_log_convex(MaxElemwise): Is the atom log-log convex?

  • is_atom_log_log_concave(MaxElemwise): Is the atom log-log concave?

  • is_incr(MaxElemwise): The atom is weakly increasing.

  • is_decr(MaxElemwise): The atom is not weakly decreasing.

  • is_pwl(MaxElemwise): Are all the arguments piecewise linear?

  • .grad(MaxElemwise): Gives the (sub/super)gradient of the atom w.r.t. each variable

Slots

arg1

The first Expression in the maximum operation.

arg2

The second Expression in the maximum operation.

...

Additional Expression objects in the maximum operation.


The MaxEntries class.

Description

The maximum of an expression.

Usage

MaxEntries(x, axis = NA_real_, keepdims = FALSE)

## S4 method for signature 'MaxEntries'
to_numeric(object, values)

## S4 method for signature 'MaxEntries'
sign_from_args(object)

## S4 method for signature 'MaxEntries'
is_atom_convex(object)

## S4 method for signature 'MaxEntries'
is_atom_concave(object)

## S4 method for signature 'MaxEntries'
is_atom_log_log_convex(object)

## S4 method for signature 'MaxEntries'
is_atom_log_log_concave(object)

## S4 method for signature 'MaxEntries'
is_incr(object, idx)

## S4 method for signature 'MaxEntries'
is_decr(object, idx)

## S4 method for signature 'MaxEntries'
is_pwl(object)

## S4 method for signature 'MaxEntries'
.grad(object, values)

## S4 method for signature 'MaxEntries'
.column_grad(object, value)

Arguments

x

An Expression representing a vector or matrix.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.

keepdims

(Optional) Should dimensions be maintained when applying the atom along an axis? If FALSE, result will be collapsed into an nx1n x 1 column vector. The default is FALSE.

object

A MaxEntries object.

values

A list of numeric values for the arguments

idx

An index into the atom.

value

A numeric value

Methods (by generic)

  • to_numeric(MaxEntries): The largest entry in x.

  • sign_from_args(MaxEntries): The sign of the atom.

  • is_atom_convex(MaxEntries): The atom is convex.

  • is_atom_concave(MaxEntries): The atom is not concave.

  • is_atom_log_log_convex(MaxEntries): Is the atom log-log convex.

  • is_atom_log_log_concave(MaxEntries): Is the atom log-log concave.

  • is_incr(MaxEntries): The atom is weakly increasing in every argument.

  • is_decr(MaxEntries): The atom is not weakly decreasing in any argument.

  • is_pwl(MaxEntries): Is x piecewise linear?

  • .grad(MaxEntries): Gives the (sub/super)gradient of the atom w.r.t. each variable

  • .column_grad(MaxEntries): Gives the (sub/super)gradient of the atom w.r.t. each column variable

Slots

x

An Expression representing a vector or matrix.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.

keepdims

(Optional) Should dimensions be maintained when applying the atom along an axis? If FALSE, result will be collapsed into an nx1n x 1 column vector. The default is FALSE.


The Maximize class.

Description

This class represents an optimization objective for maximization.

Usage

Maximize(expr)

## S4 method for signature 'Maximize'
canonicalize(object)

## S4 method for signature 'Maximize'
is_dcp(object)

## S4 method for signature 'Maximize'
is_dgp(object)

Arguments

expr

A scalar Expression to maximize.

object

A Maximize object.

Methods (by generic)

  • canonicalize(Maximize): Negates the target expression's objective.

  • is_dcp(Maximize): A logical value indicating whether the objective is concave.

  • is_dgp(Maximize): A logical value indicating whether the objective is log-log concave.

Slots

expr

A scalar Expression to maximize.

Examples

x <- Variable(3)
alpha <- c(0.8,1.0,1.2)
obj <- sum(log(alpha + x))
constr <- list(x >= 0, sum(x) == 1)
prob <- Problem(Maximize(obj), constr)
result <- solve(prob)
result$value
result$getValue(x)

Arithmetic Mean

Description

The arithmetic mean of an expression.

Usage

## S3 method for class 'Expression'
mean(x, trim = 0, na.rm = FALSE, ...)

Arguments

x

An Expression object.

trim

(Unimplemented) The fraction (0 to 0.5) of observations to be trimmed from each end of xx before the mean is computed.

na.rm

(Unimplemented) A logical value indicating whether missing values should be removed.

...

(Unimplemented) Optional arguments.

Value

An Expression representing the mean of the input.

Examples

A <- Variable(2,2)
val <- cbind(c(-5,2), c(-3,1))
prob <- Problem(Minimize(mean(A)), list(A == val))
result <- solve(prob)
result$value

Elementwise Minimum

Description

The elementwise minimum.

Usage

min_elemwise(arg1, arg2, ...)

Arguments

arg1

An Expression, vector, or matrix.

arg2

An Expression, vector, or matrix.

...

Additional Expression objects, vectors, or matrices.

Value

An Expression representing the elementwise minimum of the inputs.

Examples

a <- cbind(c(-5,2), c(-3,-1))
b <- cbind(c(5,4), c(-1,2))
prob <- Problem(Minimize(min_elemwise(a, 0, b)[1,2]))
result <- solve(prob)
result$value

Minimum

Description

The minimum of an expression.

Usage

min_entries(x, axis = NA_real_, keepdims = FALSE)

## S3 method for class 'Expression'
min(..., na.rm = FALSE)

Arguments

x

An Expression, vector, or matrix.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.

keepdims

(Optional) Should dimensions be maintained when applying the atom along an axis? If FALSE, result will be collapsed into an nx1n x 1 column vector. The default is FALSE.

...

Numeric scalar, vector, matrix, or Expression objects.

na.rm

(Unimplemented) A logical value indicating whether missing values should be removed.

Value

An Expression representing the minimum of the input.

Examples

A <- Variable(2,2)
val <- cbind(c(-5,2), c(-3,1))
prob <- Problem(Maximize(min_entries(A)), list(A == val))
result <- solve(prob)
result$value
A <- Variable(2,2)
val <- cbind(c(-5,2), c(-3,1))
prob <- Problem(Maximize(min_entries(A)), list(A == val))
result <- solve(prob)
result$value

The MinElemwise class.

Description

This class represents the elementwise minimum.

Usage

MinElemwise(arg1, arg2, ...)

## S4 method for signature 'MinElemwise'
to_numeric(object, values)

## S4 method for signature 'MinElemwise'
sign_from_args(object)

## S4 method for signature 'MinElemwise'
is_atom_convex(object)

## S4 method for signature 'MinElemwise'
is_atom_concave(object)

## S4 method for signature 'MinElemwise'
is_atom_log_log_convex(object)

## S4 method for signature 'MinElemwise'
is_atom_log_log_concave(object)

## S4 method for signature 'MinElemwise'
is_incr(object, idx)

## S4 method for signature 'MinElemwise'
is_decr(object, idx)

## S4 method for signature 'MinElemwise'
is_pwl(object)

## S4 method for signature 'MinElemwise'
.grad(object, values)

Arguments

arg1

The first Expression in the minimum operation.

arg2

The second Expression in the minimum operation.

...

Additional Expression objects in the minimum operation.

object

A MinElemwise object.

values

A list of numeric values for the arguments

idx

An index into the atom.

Methods (by generic)

  • to_numeric(MinElemwise): The elementwise minimum.

  • sign_from_args(MinElemwise): The sign of the atom.

  • is_atom_convex(MinElemwise): The atom is not convex.

  • is_atom_concave(MinElemwise): The atom is not concave.

  • is_atom_log_log_convex(MinElemwise): Is the atom log-log convex?

  • is_atom_log_log_concave(MinElemwise): Is the atom log-log concave?

  • is_incr(MinElemwise): The atom is weakly increasing.

  • is_decr(MinElemwise): The atom is not weakly decreasing.

  • is_pwl(MinElemwise): Are all the arguments piecewise linear?

  • .grad(MinElemwise): Gives the (sub/super)gradient of the atom w.r.t. each variable

Slots

arg1

The first Expression in the minimum operation.

arg2

The second Expression in the minimum operation.

...

Additional Expression objects in the minimum operation.


The MinEntries class.

Description

The minimum of an expression.

Usage

MinEntries(x, axis = NA_real_, keepdims = FALSE)

## S4 method for signature 'MinEntries'
to_numeric(object, values)

## S4 method for signature 'MinEntries'
sign_from_args(object)

## S4 method for signature 'MinEntries'
is_atom_convex(object)

## S4 method for signature 'MinEntries'
is_atom_concave(object)

## S4 method for signature 'MinEntries'
is_atom_log_log_convex(object)

## S4 method for signature 'MinEntries'
is_atom_log_log_concave(object)

## S4 method for signature 'MinEntries'
is_incr(object, idx)

## S4 method for signature 'MinEntries'
is_decr(object, idx)

## S4 method for signature 'MinEntries'
is_pwl(object)

## S4 method for signature 'MinEntries'
.grad(object, values)

## S4 method for signature 'MinEntries'
.column_grad(object, value)

Arguments

x

An Expression representing a vector or matrix.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.

keepdims

(Optional) Should dimensions be maintained when applying the atom along an axis? If FALSE, result will be collapsed into an nx1n x 1 column vector. The default is FALSE.

object

A MinEntries object.

values

A list of numeric values for the arguments

idx

An index into the atom.

value

A numeric value

Methods (by generic)

  • to_numeric(MinEntries): The largest entry in x.

  • sign_from_args(MinEntries): The sign of the atom.

  • is_atom_convex(MinEntries): The atom is not convex.

  • is_atom_concave(MinEntries): The atom is concave.

  • is_atom_log_log_convex(MinEntries): Is the atom log-log convex?

  • is_atom_log_log_concave(MinEntries): Is the atom log-log concave?

  • is_incr(MinEntries): The atom is weakly increasing in every argument.

  • is_decr(MinEntries): The atom is not weakly decreasing in any argument.

  • is_pwl(MinEntries): Is x piecewise linear?

  • .grad(MinEntries): Gives the (sub/super)gradient of the atom w.r.t. each variable

  • .column_grad(MinEntries): Gives the (sub/super)gradient of the atom w.r.t. each column variable

Slots

x

An Expression representing a vector or matrix.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.

keepdims

(Optional) Should dimensions be maintained when applying the atom along an axis? If FALSE, result will be collapsed into an nx1n x 1 column vector. The default is FALSE.


The Minimize class.

Description

This class represents an optimization objective for minimization.

Usage

Minimize(expr)

## S4 method for signature 'Minimize'
canonicalize(object)

## S4 method for signature 'Minimize'
is_dcp(object)

## S4 method for signature 'Minimize'
is_dgp(object)

Arguments

expr

A scalar Expression to minimize.

object

A Minimize object.

Methods (by generic)

  • canonicalize(Minimize): Pass on the target expression's objective and constraints.

  • is_dcp(Minimize): A logical value indicating whether the objective is convex.

  • is_dgp(Minimize): A logical value indicating whether the objective is log-log convex.

Slots

expr

A scalar Expression to minimize.


Solver Capabilities

Description

Determine if a solver is capable of solving a mixed-integer program (MIP).

Usage

mip_capable(solver)

Arguments

solver

A ReductionSolver object.

Value

A logical value.

Examples

mip_capable(ECOS())

Mixed Norm

Description

lp,q(x)=(i=1n(j=1mxi,j)q/p)1/ql_{p,q}(x) = \left(\sum_{i=1}^n (\sum_{j=1}^m |x_{i,j}|)^{q/p}\right)^{1/q}.

Usage

mixed_norm(X, p = 2, q = 1)

Arguments

X

An Expression, vector, or matrix.

p

The type of inner norm.

q

The type of outer norm.

Value

An Expression representing the lp,ql_{p,q} norm of the input.

Examples

A <- Variable(2,2)
val <- cbind(c(3,3), c(4,4))
prob <- Problem(Minimize(mixed_norm(A,2,1)), list(A == val))
result <- solve(prob)
result$value
result$getValue(A)

val <- cbind(c(1,4), c(5,6))
prob <- Problem(Minimize(mixed_norm(A,1,Inf)), list(A == val))
result <- solve(prob)
result$value
result$getValue(A)

The MixedNorm atom.

Description

The lp,ql_{p,q} norm of X, (k(lXk,lp)q/p)1/q(\sum_k (\sum_l ||X_{k,l}||^p)^{q/p})^{1/q}.

Usage

MixedNorm(X, p = 2, q = 1)

Arguments

X

The matrix to take the lp,ql_{p,q} norm of

p

The type of inner norm

q

The type of outer norm

Value

Returns the mixed norm of X with specified parameters p and q


An interface for the MOSEK solver.

Description

An interface for the MOSEK solver.

Usage

MOSEK()

## S4 method for signature 'MOSEK'
mip_capable(solver)

## S4 method for signature 'MOSEK'
import_solver(solver)

## S4 method for signature 'MOSEK'
name(x)

## S4 method for signature 'MOSEK,Problem'
accepts(object, problem)

## S4 method for signature 'MOSEK'
block_format(object, problem, constraints, exp_cone_order = NA)

## S4 method for signature 'MOSEK,Problem'
perform(object, problem)

## S4 method for signature 'MOSEK'
solve_via_data(
  object,
  data,
  warm_start,
  verbose,
  feastol,
  reltol,
  abstol,
  num_iter,
  solver_opts,
  solver_cache
)

## S4 method for signature 'MOSEK,ANY,ANY'
invert(object, solution, inverse_data)

Arguments

solver, object, x

A MOSEK object.

problem

A Problem object.

constraints

A list of Constraint objects for which coefficient andd offset data ("G", "h" respectively) is needed

exp_cone_order

A parameter that is only used when a Constraint object describes membership in the exponential cone.

data

Data generated via an apply call.

warm_start

A boolean of whether to warm start the solver.

verbose

A boolean of whether to enable solver verbosity.

feastol

The feasible tolerance.

reltol

The relative tolerance.

abstol

The absolute tolerance.

num_iter

The maximum number of iterations.

solver_opts

A list of Solver specific options

solver_cache

Cache for the solver.

solution

The raw solution returned by the solver.

inverse_data

A list containing data necessary for the inversion.

Methods (by generic)

  • mip_capable(MOSEK): Can the solver handle mixed-integer programs?

  • import_solver(MOSEK): Imports the solver.

  • name(MOSEK): Returns the name of the solver.

  • accepts(object = MOSEK, problem = Problem): Can MOSEK solve the problem?

  • block_format(MOSEK): Returns a large matrix "coeff" and a vector of constants "offset" such that every Constraint in "constraints" holds at z in R^n iff "coeff" * z <=_K offset", where K is a product of cones supported by MOSEK and CVXR (zero cone, nonnegative orthant, second order cone, exponential cone). The nature of K is inferred later by accessing the data in "lengths" and "ids".

  • perform(object = MOSEK, problem = Problem): Returns a new problem and data for inverting the new solution.

  • solve_via_data(MOSEK): Solve a problem represented by data returned from apply.

  • invert(object = MOSEK, solution = ANY, inverse_data = ANY): Returns the solution to the original problem given the inverse_data.


Parses MOSEK dual variables into corresponding CVXR constraints and dual values

Description

Parses MOSEK dual variables into corresponding CVXR constraints and dual values

Usage

MOSEK.parse_dual_vars(dual_var, constr_id_to_constr_dim)

Arguments

dual_var

List of the dual variables returned by the MOSEK solution.

constr_id_to_constr_dim

A list that contains the mapping of entry "id" that is the index of the CVXR Constraint object to which the next "dim" entries of the dual variable belong.

Value

A list with the mapping of the CVXR Constraint object indices with the corresponding dual values.


Recovers MOSEK solutions dual variables

Description

Recovers MOSEK solutions dual variables

Usage

MOSEK.recover_dual_variables(sol, inverse_data)

Arguments

sol

List of the solutions returned by the MOSEK solver.

inverse_data

A list of the data returned by the perform function.

Value

A list containing the mapping of CVXR's Constraint object's id to its corresponding dual variables in the current solution.


Elementwise Multiplication

Description

The elementwise product of two expressions. The first expression must be constant.

Usage

multiply(lh_exp, rh_exp)

Arguments

lh_exp

An Expression, vector, or matrix representing the left-hand value.

rh_exp

An Expression, vector, or matrix representing the right-hand value.

Value

An Expression representing the elementwise product of the inputs.

Examples

A <- Variable(2,2)
c <- cbind(c(1,-1), c(2,-2))
expr <- multiply(c, A)
obj <- Minimize(norm_inf(expr))
prob <- Problem(obj, list(A == 5))
result <- solve(prob)
result$value
result$getValue(expr)

The Multiply class.

Description

This class represents the elementwise product of two expressions.

Usage

Multiply(lh_exp, rh_exp)

## S4 method for signature 'Multiply'
to_numeric(object, values)

## S4 method for signature 'Multiply'
dim_from_args(object)

## S4 method for signature 'Multiply'
is_atom_log_log_convex(object)

## S4 method for signature 'Multiply'
is_atom_log_log_concave(object)

## S4 method for signature 'Multiply'
is_psd(object)

## S4 method for signature 'Multiply'
is_nsd(object)

## S4 method for signature 'Multiply'
graph_implementation(object, arg_objs, dim, data = NA_real_)

Arguments

lh_exp

An Expression or R numeric data.

rh_exp

An Expression or R numeric data.

object

A Multiply object.

values

A list of arguments to the atom.

arg_objs

A list of linear expressions for each argument.

dim

A vector representing the dimensions of the resulting expression.

data

A list of additional data required by the atom.

Methods (by generic)

  • to_numeric(Multiply): Multiplies the values elementwise.

  • dim_from_args(Multiply): The sum of the argument dimensions - 1.

  • is_atom_log_log_convex(Multiply): Is the atom log-log convex?

  • is_atom_log_log_concave(Multiply): Is the atom log-log concave?

  • is_psd(Multiply): Is the expression a positive semidefinite matrix?

  • is_nsd(Multiply): Is the expression a negative semidefinite matrix?

  • graph_implementation(Multiply): The graph implementation of the expression.


Variable, Parameter, or Expression Name

Description

The string representation of a variable, parameter, or expression.

Usage

name(x)

Arguments

x

A Variable, Parameter, or Expression object.

Value

For Variable or Parameter objects, the value in the name slot. For Expression objects, a string indicating the nested atoms and their respective arguments.

Examples

x <- Variable()
y <- Variable(3, name = "yVar")

name(x)
name(y)

Elementwise Negative

Description

The elementwise absolute negative portion of an expression, min(xi,0)-\min(x_i,0). This is equivalent to -min_elemwise(x,0).

Usage

neg(x)

Arguments

x

An Expression, vector, or matrix.

Value

An Expression representing the negative portion of the input.

Examples

x <- Variable(2)
val <- matrix(c(-3,3))
prob <- Problem(Minimize(neg(x)[1]), list(x == val))
result <- solve(prob)
result$value

An alias for -MinElemwise(x, 0)

Description

An alias for -MinElemwise(x, 0)

Usage

Neg(x)

Arguments

x

An R numeric value or Expression.

Value

An alias for -MinElemwise(x, 0)


The NonlinearConstraint class.

Description

This class represents a nonlinear inequality constraint, f(x)0f(x) \leq 0 where ff is twice-differentiable.

Usage

NonlinearConstraint(f, vars_, id = NA_integer_)

Arguments

f

A nonlinear function.

vars_

A list of variables involved in the function.

id

(Optional) An integer representing the unique ID of the contraint.

Slots

f

A nonlinear function.

vars_

A list of variables involved in the function.

.x_dim

(Internal) The dimensions of a column vector with number of elements equal to the total elements in all the variables.


The NonPosConstraint class

Description

The NonPosConstraint class

Usage

## S4 method for signature 'NonPosConstraint'
name(x)

## S4 method for signature 'NonPosConstraint'
is_dcp(object)

## S4 method for signature 'NonPosConstraint'
is_dgp(object)

## S4 method for signature 'NonPosConstraint'
canonicalize(object)

## S4 method for signature 'NonPosConstraint'
residual(object)

Arguments

x, object

A NonPosConstraint object.

Methods (by generic)

  • name(NonPosConstraint): The string representation of the constraint.

  • is_dcp(NonPosConstraint): Is the constraint DCP?

  • is_dgp(NonPosConstraint): Is the constraint DGP?

  • canonicalize(NonPosConstraint): The graph implementation of the object.

  • residual(NonPosConstraint): The residual of the constraint.


The Norm atom.

Description

Wrapper around the different norm atoms.

Usage

Norm(x, p = 2, axis = NA_real_, keepdims = FALSE)

Arguments

x

The matrix to take the norm of

p

The type of norm. Valid options include any positive integer, 'fro' (for frobenius), 'nuc' (sum of singular values), np.inf or 'inf' (infinity norm).

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.

keepdims

(Optional) Should dimensions be maintained when applying the atom along an axis? If FALSE, result will be collapsed into an nx1n x 1 column vector. The default is FALSE.

Value

Returns the specified norm of x.


Infinity-Norm

Description

x=maxi=1,,nxi\|x\|_{\infty} = \max_{i=1,\ldots,n} |x_i|.

Usage

norm_inf(x, axis = NA_real_, keepdims = FALSE)

Arguments

x

An Expression, vector, or matrix.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.

keepdims

(Optional) Should dimensions be maintained when applying the atom along an axis? If FALSE, result will be collapsed into an nx1n x 1 column vector. The default is FALSE.

Value

An Expression representing the infinity-norm of the input.

Examples

a <- Variable()
b <- Variable()
c <- Variable()

prob <- Problem(Minimize(norm_inf(a)), list(a >= 2))
result <- solve(prob)
result$value
result$getValue(a)

prob <- Problem(Minimize(3*norm_inf(a + 2*b) + c), list(a >= 2, b <= -1, c == 3))
result <- solve(prob)
result$value
result$getValue(a + 2*b)
result$getValue(c)

prob <- Problem(Maximize(-norm_inf(a)), list(a <= -2))
result <- solve(prob)
result$value
result$getValue(a)

x <- Variable(2)
z <- Variable(2)
prob <- Problem(Minimize(norm_inf(x - z) + 5), list(x >= c(2,3), z <= c(-1,-4)))
result <- solve(prob)
result$value
result$getValue(x[1] - z[1])

Nuclear Norm

Description

The nuclear norm, i.e. sum of the singular values of a matrix.

Usage

norm_nuc(A)

Arguments

A

An Expression or matrix.

Value

An Expression representing the nuclear norm of the input.

Examples

C <- Variable(3,3)
val <- cbind(3:5, 6:8, 9:11)
prob <- Problem(Minimize(norm_nuc(C)), list(C == val))
result <- solve(prob)
result$value

Matrix Norm

Description

The matrix norm, which can be the 1-norm ("1"), infinity-norm ("I"), Frobenius norm ("F"), maximum modulus of all the entries ("M"), or the spectral norm ("2"), as determined by the value of type.

Usage

## S4 method for signature 'Expression,character'
norm(x, type)

Arguments

x

An Expression.

type

A character indicating the type of norm desired.

  • "O", "o" or "1" specifies the 1-norm (maximum absolute column sum).

  • "I" or "i" specifies the infinity-norm (maximum absolute row sum).

  • "F" or "f" specifies the Frobenius norm (Euclidean norm of the vectorized x).

  • "M" or "m" specifies the maximum modulus of all the elements in x.

  • "2" specifies the spectral norm, which is the largest singular value of x.

Value

An Expression representing the norm of the input.

See Also

The p_norm function calculates the vector p-norm.

Examples

C <- Variable(3,2)
val <- Constant(rbind(c(1,2), c(3,4), c(5,6)))
prob <- Problem(Minimize(norm(C, "F")), list(C == val))
result <- solve(prob, solver = "SCS")
result$value

1-Norm

Description

x1=i=1nxi\|x\|_1 = \sum_{i=1}^n |x_i|.

Usage

norm1(x, axis = NA_real_, keepdims = FALSE)

Arguments

x

An Expression, vector, or matrix.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.

keepdims

(Optional) Should dimensions be maintained when applying the atom along an axis? If FALSE, result will be collapsed into an nx1n x 1 column vector. The default is FALSE.

Value

An Expression representing the 1-norm of the input.

Examples

a <- Variable()
prob <- Problem(Minimize(norm1(a)), list(a <= -2))
result <- solve(prob)
result$value
result$getValue(a)

prob <- Problem(Maximize(-norm1(a)), list(a <= -2))
result <- solve(prob)
result$value
result$getValue(a)

x <- Variable(2)
z <- Variable(2)
prob <- Problem(Minimize(norm1(x - z) + 5), list(x >= c(2,3), z <= c(-1,-4)))
result <- solve(prob)
result$value
result$getValue(x[1] - z[1])

The Norm1 class.

Description

This class represents the 1-norm of an expression.

Usage

Norm1(x, axis = NA_real_, keepdims = FALSE)

## S4 method for signature 'Norm1'
name(x)

## S4 method for signature 'Norm1'
to_numeric(object, values)

## S4 method for signature 'Norm1'
allow_complex(object)

## S4 method for signature 'Norm1'
sign_from_args(object)

## S4 method for signature 'Norm1'
is_atom_convex(object)

## S4 method for signature 'Norm1'
is_atom_concave(object)

## S4 method for signature 'Norm1'
is_incr(object, idx)

## S4 method for signature 'Norm1'
is_decr(object, idx)

## S4 method for signature 'Norm1'
is_pwl(object)

## S4 method for signature 'Norm1'
get_data(object)

## S4 method for signature 'Norm1'
.domain(object)

## S4 method for signature 'Norm1'
.grad(object, values)

## S4 method for signature 'Norm1'
.column_grad(object, value)

Arguments

x

An Expression object.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.

keepdims

(Optional) Should dimensions be maintained when applying the atom along an axis? If FALSE, result will be collapsed into an nx1n x 1 column vector. The default is FALSE.

object

A Norm1 object.

values

A list of numeric values for the arguments

idx

An index into the atom.

value

A numeric value

Methods (by generic)

  • name(Norm1): The name and arguments of the atom.

  • to_numeric(Norm1): Returns the 1-norm of x along the given axis.

  • allow_complex(Norm1): Does the atom handle complex numbers?

  • sign_from_args(Norm1): The atom is always positive.

  • is_atom_convex(Norm1): The atom is convex.

  • is_atom_concave(Norm1): The atom is not concave.

  • is_incr(Norm1): Is the composition weakly increasing in argument idx?

  • is_decr(Norm1): Is the composition weakly decreasing in argument idx?

  • is_pwl(Norm1): Is the atom piecewise linear?

  • get_data(Norm1): Returns the axis.

  • .domain(Norm1): Returns constraints describing the domain of the node

  • .grad(Norm1): Gives the (sub/super)gradient of the atom w.r.t. each variable

  • .column_grad(Norm1): Gives the (sub/super)gradient of the atom w.r.t. each column variable

Slots

x

An Expression object.


Euclidean Norm

Description

x2=(i=1nxi2)1/2\|x\|_2 = \left(\sum_{i=1}^n x_i^2\right)^{1/2}.

Usage

norm2(x, axis = NA_real_, keepdims = FALSE)

Arguments

x

An Expression, vector, or matrix.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.

keepdims

(Optional) Should dimensions be maintained when applying the atom along an axis? If FALSE, result will be collapsed into an nx1n x 1 column vector. The default is FALSE.

Value

An Expression representing the Euclidean norm of the input.

Examples

a <- Variable()
prob <- Problem(Minimize(norm2(a)), list(a <= -2))
result <- solve(prob)
result$value
result$getValue(a)

prob <- Problem(Maximize(-norm2(a)), list(a <= -2))
result <- solve(prob)
result$value
result$getValue(a)

x <- Variable(2)
z <- Variable(2)
prob <- Problem(Minimize(norm2(x - z) + 5), list(x >= c(2,3), z <= c(-1,-4)))
result <- solve(prob)
result$value
result$getValue(x)
result$getValue(z)

prob <- Problem(Minimize(norm2(t(x - z)) + 5), list(x >= c(2,3), z <= c(-1,-4)))
result <- solve(prob)
result$value
result$getValue(x)
result$getValue(z)

The Norm2 atom.

Description

The 2-norm of an expression.

Usage

Norm2(x, axis = NA_real_, keepdims = FALSE)

Arguments

x

An Expression object.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.

keepdims

(Optional) Should dimensions be maintained when applying the atom along an axis? If FALSE, result will be collapsed into an nx1n x 1 column vector. The default is FALSE.

Value

Returns the 2-norm of x.


The NormInf class.

Description

This class represents the infinity-norm.

Usage

## S4 method for signature 'NormInf'
name(x)

## S4 method for signature 'NormInf'
to_numeric(object, values)

## S4 method for signature 'NormInf'
allow_complex(object)

## S4 method for signature 'NormInf'
sign_from_args(object)

## S4 method for signature 'NormInf'
is_atom_convex(object)

## S4 method for signature 'NormInf'
is_atom_concave(object)

## S4 method for signature 'NormInf'
is_atom_log_log_convex(object)

## S4 method for signature 'NormInf'
is_atom_log_log_concave(object)

## S4 method for signature 'NormInf'
is_incr(object, idx)

## S4 method for signature 'NormInf'
is_decr(object, idx)

## S4 method for signature 'NormInf'
is_pwl(object)

## S4 method for signature 'NormInf'
get_data(object)

## S4 method for signature 'NormInf'
.domain(object)

## S4 method for signature 'NormInf'
.grad(object, values)

## S4 method for signature 'NormInf'
.column_grad(object, value)

Arguments

x, object

A NormInf object.

values

A list of numeric values for the arguments

idx

An index into the atom.

value

A numeric value

Methods (by generic)

  • name(NormInf): The name and arguments of the atom.

  • to_numeric(NormInf): Returns the infinity norm of x.

  • allow_complex(NormInf): Does the atom handle complex numbers?

  • sign_from_args(NormInf): The atom is always positive.

  • is_atom_convex(NormInf): The atom is convex.

  • is_atom_concave(NormInf): The atom is not concave.

  • is_atom_log_log_convex(NormInf): Is the atom log-log convex?

  • is_atom_log_log_concave(NormInf): Is the atom log-log concave?

  • is_incr(NormInf): Is the composition weakly increasing in argument idx?

  • is_decr(NormInf): Is the composition weakly decreasing in argument idx?

  • is_pwl(NormInf): Is the atom piecewise linear?

  • get_data(NormInf): Returns the axis.

  • .domain(NormInf): Returns constraints describing the domain of the node

  • .grad(NormInf): Gives the (sub/super)gradient of the atom w.r.t. each variable

  • .column_grad(NormInf): Gives the (sub/super)gradient of the atom w.r.t. each column variable


The NormNuc class.

Description

The nuclear norm, i.e. sum of the singular values of a matrix.

Usage

NormNuc(A)

## S4 method for signature 'NormNuc'
to_numeric(object, values)

## S4 method for signature 'NormNuc'
allow_complex(object)

## S4 method for signature 'NormNuc'
dim_from_args(object)

## S4 method for signature 'NormNuc'
sign_from_args(object)

## S4 method for signature 'NormNuc'
is_atom_convex(object)

## S4 method for signature 'NormNuc'
is_atom_concave(object)

## S4 method for signature 'NormNuc'
is_incr(object, idx)

## S4 method for signature 'NormNuc'
is_decr(object, idx)

## S4 method for signature 'NormNuc'
.grad(object, values)

Arguments

A

An Expression or numeric matrix.

object

A NormNuc object.

values

A list of numeric values for the arguments

idx

An index into the atom.

Methods (by generic)

  • to_numeric(NormNuc): The nuclear norm (i.e., the sum of the singular values) of A.

  • allow_complex(NormNuc): Does the atom handle complex numbers?

  • dim_from_args(NormNuc): The atom is a scalar.

  • sign_from_args(NormNuc): The atom is positive.

  • is_atom_convex(NormNuc): The atom is convex.

  • is_atom_concave(NormNuc): The atom is not concave.

  • is_incr(NormNuc): The atom is not monotonic in any argument.

  • is_decr(NormNuc): The atom is not monotonic in any argument.

  • .grad(NormNuc): Gives the (sub/super)gradient of the atom w.r.t. each variable

Slots

A

An Expression or numeric matrix.


Arithmetic Operations on Objectives

Description

Add, subtract, multiply, or divide optimization objectives.

Usage

## S4 method for signature 'Objective,numeric'
e1 + e2

## S4 method for signature 'numeric,Objective'
e1 + e2

## S4 method for signature 'Minimize,missing'
e1 - e2

## S4 method for signature 'Minimize,Minimize'
e1 + e2

## S4 method for signature 'Minimize,Maximize'
e1 + e2

## S4 method for signature 'Objective,Minimize'
e1 - e2

## S4 method for signature 'Objective,Maximize'
e1 - e2

## S4 method for signature 'Minimize,Objective'
e1 - e2

## S4 method for signature 'Maximize,Objective'
e1 - e2

## S4 method for signature 'Objective,numeric'
e1 - e2

## S4 method for signature 'numeric,Objective'
e1 - e2

## S4 method for signature 'Minimize,numeric'
e1 * e2

## S4 method for signature 'Maximize,numeric'
e1 * e2

## S4 method for signature 'numeric,Minimize'
e1 * e2

## S4 method for signature 'numeric,Maximize'
e1 * e2

## S4 method for signature 'Objective,numeric'
e1 / e2

## S4 method for signature 'Maximize,missing'
e1 - e2

## S4 method for signature 'Maximize,Maximize'
e1 + e2

## S4 method for signature 'Maximize,Minimize'
e1 + e2

Arguments

e1

The left-hand Minimize, Maximize, or numeric value.

e2

The right-hand Minimize, Maximize, or numeric value.

Value

A Minimize or Maximize object.


The Objective class.

Description

This class represents an optimization objective.

Usage

Objective(expr)

## S4 method for signature 'Objective'
value(object)

## S4 method for signature 'Objective'
is_quadratic(object)

## S4 method for signature 'Objective'
is_qpwa(object)

Arguments

expr

A scalar Expression to optimize.

object

An Objective object.

Methods (by generic)

  • value(Objective): The value of the objective expression.

  • is_quadratic(Objective): Is the objective a quadratic function?

  • is_qpwa(Objective): Is the objective a quadratic of piecewise affine function?

Slots

expr

A scalar Expression to optimize.


Difference on Restricted Domain

Description

The difference 1x1 - x with domain {x:0<x<1}\{x : 0 < x < 1\}.

Usage

one_minus_pos(x)

Arguments

x

An Expression, vector, or matrix.

Details

This atom is log-log concave.

Value

An Expression representing one minus the input restricted to (0,1)(0,1).

Examples

x <- Variable(pos = TRUE)
y <- Variable(pos = TRUE)
prob <- Problem(Maximize(one_minus_pos(x*y)), list(x <= 2 * y^2, y >= .2))
result <- solve(prob, gp = TRUE)
result$value
result$getValue(x)
result$getValue(y)

The OneMinusPos class.

Description

This class represents the difference 1x1 - x with domain {x:0<x<1\{x : 0 < x < 1}

Usage

OneMinusPos(x)

## S4 method for signature 'OneMinusPos'
name(x)

## S4 method for signature 'OneMinusPos'
to_numeric(object, values)

## S4 method for signature 'OneMinusPos'
dim_from_args(object)

## S4 method for signature 'OneMinusPos'
sign_from_args(object)

## S4 method for signature 'OneMinusPos'
is_atom_convex(object)

## S4 method for signature 'OneMinusPos'
is_atom_concave(object)

## S4 method for signature 'OneMinusPos'
is_atom_log_log_convex(object)

## S4 method for signature 'OneMinusPos'
is_atom_log_log_concave(object)

## S4 method for signature 'OneMinusPos'
is_incr(object, idx)

## S4 method for signature 'OneMinusPos'
is_decr(object, idx)

## S4 method for signature 'OneMinusPos'
.grad(object, values)

Arguments

x

An Expression or numeric matrix.

object

A OneMinusPos object.

values

A list of numeric values for the arguments

idx

An index into the atom.

Methods (by generic)

  • name(OneMinusPos): The name and arguments of the atom.

  • to_numeric(OneMinusPos): Returns one minus the value.

  • dim_from_args(OneMinusPos): The dimensions of the atom.

  • sign_from_args(OneMinusPos): Returns the sign (is positive, is negative) of the atom.

  • is_atom_convex(OneMinusPos): Is the atom convex?

  • is_atom_concave(OneMinusPos): Is the atom concave?

  • is_atom_log_log_convex(OneMinusPos): Is the atom log-log convex?

  • is_atom_log_log_concave(OneMinusPos): Is the atom log-log concave?

  • is_incr(OneMinusPos): Is the atom weakly increasing in the argument idx?

  • is_decr(OneMinusPos): Is the atom weakly decreasing in the argument idx?

  • .grad(OneMinusPos): Gives the (sub/super)gradient of the atom w.r.t. each variable

Slots

x

An Expression or numeric matrix.


An interface for the OSQP solver.

Description

An interface for the OSQP solver.

Usage

OSQP()

## S4 method for signature 'OSQP'
status_map(solver, status)

## S4 method for signature 'OSQP'
name(x)

## S4 method for signature 'OSQP'
import_solver(solver)

## S4 method for signature 'OSQP,list,InverseData'
invert(object, solution, inverse_data)

## S4 method for signature 'OSQP'
solve_via_data(
  object,
  data,
  warm_start,
  verbose,
  feastol,
  reltol,
  abstol,
  num_iter,
  solver_opts,
  solver_cache
)

Arguments

solver, object, x

A OSQP object.

status

A status code returned by the solver.

solution

The raw solution returned by the solver.

inverse_data

A InverseData object containing data necessary for the inversion.

data

Data generated via an apply call.

warm_start

A boolean of whether to warm start the solver.

verbose

A boolean of whether to enable solver verbosity.

feastol

The feasible tolerance.

reltol

The relative tolerance.

abstol

The absolute tolerance.

num_iter

The maximum number of iterations.

solver_opts

A list of Solver specific options

solver_cache

Cache for the solver.

Methods (by generic)

  • status_map(OSQP): Converts status returned by the OSQP solver to its respective CVXPY status.

  • name(OSQP): Returns the name of the solver.

  • import_solver(OSQP): Imports the solver.

  • invert(object = OSQP, solution = list, inverse_data = InverseData): Returns the solution to the original problem given the inverse_data.

  • solve_via_data(OSQP): Solve a problem represented by data returned from apply.


P-Norm

Description

The vector p-norm. If given a matrix variable, p_norm will treat it as a vector and compute the p-norm of the concatenated columns.

Usage

p_norm(x, p = 2, axis = NA_real_, keepdims = FALSE, max_denom = 1024)

Arguments

x

An Expression, vector, or matrix.

p

A number greater than or equal to 1, or equal to positive infinity.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.

keepdims

(Optional) Should dimensions be maintained when applying the atom along an axis? If FALSE, result will be collapsed into an nx1n x 1 column vector. The default is FALSE.

max_denom

(Optional) The maximum denominator considered in forming a rational approximation for pp. The default is 1024.

Details

For p1p \geq 1, the p-norm is given by

xp=(i=1nxip)1/p\|x\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}

with domain xRnx \in \mathbf{R}^n. For p<1,p0p < 1, p \neq 0, the p-norm is given by

xp=(i=1nxip)1/p\|x\|_p = \left(\sum_{i=1}^n x_i^p\right)^{1/p}

with domain xR+nx \in \mathbf{R}^n_+.

  • Note that the "p-norm" is actually a norm only when p1p \geq 1 or p=+p = +\infty. For these cases, it is convex.

  • The expression is undefined when p=0p = 0.

  • Otherwise, when p<1p < 1, the expression is concave, but not a true norm.

Value

An Expression representing the p-norm of the input.

Examples

x <- Variable(3)
prob <- Problem(Minimize(p_norm(x,2)))
result <- solve(prob)
result$value
result$getValue(x)

prob <- Problem(Minimize(p_norm(x,Inf)))
result <- solve(prob)
result$value
result$getValue(x)

## Not run: 
  a <- c(1.0, 2, 3)
  prob <- Problem(Minimize(p_norm(x,1.6)), list(t(x) %*% a >= 1))
  result <- solve(prob)
  result$value
  result$getValue(x)

  prob <- Problem(Minimize(sum(abs(x - a))), list(p_norm(x,-1) >= 0))
  result <- solve(prob)
  result$value
  result$getValue(x)

## End(Not run)

The Parameter class.

Description

This class represents a parameter, either scalar or a matrix.

Usage

Parameter(
  rows = NULL,
  cols = NULL,
  name = NA_character_,
  value = NA_real_,
  ...
)

## S4 method for signature 'Parameter'
get_data(object)

## S4 method for signature 'Parameter'
name(x)

## S4 method for signature 'Parameter'
value(object)

## S4 replacement method for signature 'Parameter'
value(object) <- value

## S4 method for signature 'Parameter'
grad(object)

## S4 method for signature 'Parameter'
parameters(object)

## S4 method for signature 'Parameter'
canonicalize(object)

Arguments

rows

The number of rows in the parameter.

cols

The number of columns in the parameter.

name

(Optional) A character string representing the name of the parameter.

value

(Optional) A numeric element, vector, matrix, or data.frame. Defaults to NA and may be changed with value<- later.

...

Additional attribute arguments. See Leaf for details.

object, x

A Parameter object.

Methods (by generic)

  • get_data(Parameter): Returns list(dim, name, value, attributes).

  • name(Parameter): The name of the parameter.

  • value(Parameter): The value of the parameter.

  • value(Parameter) <- value: Set the value of the parameter.

  • grad(Parameter): An empty list since the gradient of a parameter is zero.

  • parameters(Parameter): Returns itself as a parameter.

  • canonicalize(Parameter): The canonical form of the parameter.

Slots

rows

The number of rows in the parameter.

cols

The number of columns in the parameter.

name

(Optional) A character string representing the name of the parameter.

value

(Optional) A numeric element, vector, matrix, or data.frame. Defaults to NA and may be changed with value<- later.

Examples

x <- Parameter(3, name = "x0", nonpos = TRUE) ## 3-vec negative
is_nonneg(x)
is_nonpos(x)
size(x)

Perform Reduction

Description

Performs the reduction on a problem and returns an equivalent problem.

Usage

perform(object, problem)

Arguments

object

A Reduction object.

problem

A Problem on which the reduction will be performed.

Value

A list containing

"problem"

A Problem or list representing the equivalent problem.

"inverse_data"

A InverseData or list containing the data needed to invert this particular reduction.


Perron-Frobenius Eigenvalue

Description

The Perron-Frobenius eigenvalue of a positive matrix.

Usage

pf_eigenvalue(X)

Arguments

X

An Expression or positive square matrix.

Details

For an elementwise positive matrix XX, this atom represents its spectral radius, i.e., the magnitude of its largest eigenvalue. Because XX is positive, the spectral radius equals its largest eigenvalue, which is guaranteed to be positive.

This atom is log-log convex.

Value

An Expression representing the largest eigenvalue of the input.

Examples

n <- 3
X <- Variable(n, n, pos=TRUE)
objective_fn <- pf_eigenvalue(X)
constraints <- list( X[1,1]== 1.0,
                     X[1,3] == 1.9,
                     X[2,2] == .8,
                     X[3,1] == 3.2,
                     X[3,2] == 5.9,
                     X[1, 2] * X[2, 1] * X[2,3] * X[3,3] == 1)
problem <- Problem(Minimize(objective_fn), constraints)
result <- solve(problem, gp=TRUE)
result$value
result$getValue(X)

The PfEigenvalue class.

Description

This class represents the Perron-Frobenius eigenvalue of a positive matrix.

Usage

PfEigenvalue(X)

## S4 method for signature 'PfEigenvalue'
name(x)

## S4 method for signature 'PfEigenvalue'
to_numeric(object, values)

## S4 method for signature 'PfEigenvalue'
dim_from_args(object)

## S4 method for signature 'PfEigenvalue'
sign_from_args(object)

## S4 method for signature 'PfEigenvalue'
is_atom_convex(object)

## S4 method for signature 'PfEigenvalue'
is_atom_concave(object)

## S4 method for signature 'PfEigenvalue'
is_atom_log_log_convex(object)

## S4 method for signature 'PfEigenvalue'
is_atom_log_log_concave(object)

## S4 method for signature 'PfEigenvalue'
is_incr(object, idx)

## S4 method for signature 'PfEigenvalue'
is_decr(object, idx)

## S4 method for signature 'PfEigenvalue'
.grad(object, values)

Arguments

X

An Expression or numeric matrix.

x, object

A PfEigenvalue object.

values

A list of numeric values for the arguments

idx

An index into the atom.

Methods (by generic)

  • name(PfEigenvalue): The name and arguments of the atom.

  • to_numeric(PfEigenvalue): Returns the Perron-Frobenius eigenvalue of X.

  • dim_from_args(PfEigenvalue): The dimensions of the atom.

  • sign_from_args(PfEigenvalue): Returns the sign (is positive, is negative) of the atom.

  • is_atom_convex(PfEigenvalue): Is the atom convex?

  • is_atom_concave(PfEigenvalue): Is the atom concave?

  • is_atom_log_log_convex(PfEigenvalue): Is the atom log-log convex?

  • is_atom_log_log_concave(PfEigenvalue): Is the atom log-log concave?

  • is_incr(PfEigenvalue): Is the atom weakly increasing in the argument idx?

  • is_decr(PfEigenvalue): Is the atom weakly decreasing in the argument idx?

  • .grad(PfEigenvalue): Gives the (sub/super)gradient of the atom w.r.t. each variable

Slots

X

An Expression or numeric matrix.


The Pnorm class.

Description

This class represents the vector p-norm.

Usage

Pnorm(x, p = 2, axis = NA_real_, keepdims = FALSE, max_denom = 1024)

## S4 method for signature 'Pnorm'
allow_complex(object)

## S4 method for signature 'Pnorm'
to_numeric(object, values)

## S4 method for signature 'Pnorm'
validate_args(object)

## S4 method for signature 'Pnorm'
sign_from_args(object)

## S4 method for signature 'Pnorm'
is_atom_convex(object)

## S4 method for signature 'Pnorm'
is_atom_concave(object)

## S4 method for signature 'Pnorm'
is_atom_log_log_convex(object)

## S4 method for signature 'Pnorm'
is_atom_log_log_concave(object)

## S4 method for signature 'Pnorm'
is_incr(object, idx)

## S4 method for signature 'Pnorm'
is_decr(object, idx)

## S4 method for signature 'Pnorm'
is_pwl(object)

## S4 method for signature 'Pnorm'
get_data(object)

## S4 method for signature 'Pnorm'
name(x)

## S4 method for signature 'Pnorm'
.domain(object)

## S4 method for signature 'Pnorm'
.grad(object, values)

## S4 method for signature 'Pnorm'
.column_grad(object, value)

Arguments

x

An Expression representing a vector or matrix.

p

A number greater than or equal to 1, or equal to positive infinity.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.

keepdims

(Optional) Should dimensions be maintained when applying the atom along an axis? If FALSE, result will be collapsed into an nx1n x 1 column vector. The default is FALSE.

max_denom

(Optional) The maximum denominator considered in forming a rational approximation for pp. The default is 1024.

object

A Pnorm object.

values

A list of numeric values for the arguments

idx

An index into the atom.

value

A numeric value

Details

If given a matrix variable, Pnorm will treat it as a vector and compute the p-norm of the concatenated columns.

For p1p \geq 1, the p-norm is given by

xp=(i=1nxip)1/p\|x\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}

with domain xRnx \in \mathbf{R}^n. For p<1,p0p < 1, p\neq 0, the p-norm is given by

xp=(i=1nxip)1/p\|x\|_p = \left(\sum_{i=1}^n x_i^p\right)^{1/p}

with domain xR+nx \in \mathbf{R}^n_+.

  • Note that the "p-norm" is actually a norm only when p1p \geq 1 or p=+p = +\infty. For these cases, it is convex.

  • The expression is undefined when p=0p = 0.

  • Otherwise, when p<1p < 1, the expression is concave, but not a true norm.

Methods (by generic)

  • allow_complex(Pnorm): Does the atom handle complex numbers?

  • to_numeric(Pnorm): The p-norm of x.

  • validate_args(Pnorm): Check that the arguments are valid.

  • sign_from_args(Pnorm): The atom is positive.

  • is_atom_convex(Pnorm): The atom is convex if p1p \geq 1.

  • is_atom_concave(Pnorm): The atom is concave if p<1p < 1.

  • is_atom_log_log_convex(Pnorm): Is the atom log-log convex?

  • is_atom_log_log_concave(Pnorm): Is the atom log-log concave?

  • is_incr(Pnorm): The atom is weakly increasing if p<1p < 1 or p>1p > 1 and x is positive.

  • is_decr(Pnorm): The atom is weakly decreasing if p>1p > 1 and x is negative.

  • is_pwl(Pnorm): The atom is not piecewise linear unless p=1p = 1 or p=p = \infty.

  • get_data(Pnorm): Returns list(p, axis).

  • name(Pnorm): The name and arguments of the atom.

  • .domain(Pnorm): Returns constraints describing the domain of the node

  • .grad(Pnorm): Gives the (sub/super)gradient of the atom w.r.t. each variable

  • .column_grad(Pnorm): Gives the (sub/super)gradient of the atom w.r.t. each column variable

Slots

x

An Expression representing a vector or matrix.

p

A number greater than or equal to 1, or equal to positive infinity.

max_denom

The maximum denominator considered in forming a rational approximation for pp.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.

keepdims

(Optional) Should dimensions be maintained when applying the atom along an axis? If FALSE, result will be collapsed into an nx1n x 1 column vector. The default is FALSE.

.approx_error

(Internal) The absolute difference between pp and its rational approximation.

.original_p

(Internal) The original input pp.


Elementwise Positive

Description

The elementwise positive portion of an expression, max(xi,0)\max(x_i,0). This is equivalent to max_elemwise(x,0).

Usage

pos(x)

Arguments

x

An Expression, vector, or matrix.

Value

An Expression representing the positive portion of the input.

Examples

x <- Variable(2)
val <- matrix(c(-3,2))
prob <- Problem(Minimize(pos(x)[1]), list(x == val))
result <- solve(prob)
result$value

An alias for MaxElemwise(x, 0)

Description

An alias for MaxElemwise(x, 0)

Usage

Pos(x)

Arguments

x

An R numeric value or Expression.

Value

An alias for MaxElemwise(x, 0)


The Power class.

Description

This class represents the elementwise power function f(x)=xpf(x) = x^p. If expr is a CVXR expression, then expr^p is equivalent to Power(expr, p).

Usage

Power(x, p, max_denom = 1024)

## S4 method for signature 'Power'
to_numeric(object, values)

## S4 method for signature 'Power'
sign_from_args(object)

## S4 method for signature 'Power'
is_atom_convex(object)

## S4 method for signature 'Power'
is_atom_concave(object)

## S4 method for signature 'Power'
is_atom_log_log_convex(object)

## S4 method for signature 'Power'
is_atom_log_log_concave(object)

## S4 method for signature 'Power'
is_constant(object)

## S4 method for signature 'Power'
is_incr(object, idx)

## S4 method for signature 'Power'
is_decr(object, idx)

## S4 method for signature 'Power'
is_quadratic(object)

## S4 method for signature 'Power'
is_qpwa(object)

## S4 method for signature 'Power'
.grad(object, values)

## S4 method for signature 'Power'
.domain(object)

## S4 method for signature 'Power'
get_data(object)

## S4 method for signature 'Power'
copy(object, args = NULL, id_objects = list())

## S4 method for signature 'Power'
name(x)

Arguments

x

The Expression to be raised to a power.

p

A numeric value indicating the scalar power.

max_denom

The maximum denominator considered in forming a rational approximation of p.

object

A Power object.

values

A list of numeric values for the arguments

idx

An index into the atom.

args

A list of arguments to reconstruct the atom. If args=NULL, use the current args of the atom

id_objects

Currently unused.

Details

For p=0p = 0, f(x)=1f(x) = 1, constant, positive.

For p=1p = 1, f(x)=xf(x) = x, affine, increasing, same sign as xx.

For p=2,4,8,...p = 2,4,8,..., f(x)=xpf(x) = |x|^p, convex, signed monotonicity, positive.

For p<0p < 0 and f(x)=f(x) =

xpx^p

for x>0x > 0

++\infty

x0x \leq 0

, this function is convex, decreasing, and positive.

For 0<p<10 < p < 1 and f(x)=f(x) =

xpx^p

for x0x \geq 0

-\infty

x<0x < 0

, this function is concave, increasing, and positive.

For p>1,p2,4,8,p > 1, p \neq 2,4,8,\ldots and f(x)=f(x) =

xpx^p

for x0x \geq 0

++\infty

x<0x < 0

, this function is convex, increasing, and positive.

Methods (by generic)

  • to_numeric(Power): Throw an error if the power is negative and cannot be handled.

  • sign_from_args(Power): The sign of the atom.

  • is_atom_convex(Power): Is p0p \leq 0 or p1p \geq 1?

  • is_atom_concave(Power): Is p0p \geq 0 or p1p \leq 1?

  • is_atom_log_log_convex(Power): Is the atom log-log convex?

  • is_atom_log_log_concave(Power): Is the atom log-log concave?

  • is_constant(Power): A logical value indicating whether the atom is constant.

  • is_incr(Power): A logical value indicating whether the atom is weakly increasing.

  • is_decr(Power): A logical value indicating whether the atom is weakly decreasing.

  • is_quadratic(Power): A logical value indicating whether the atom is quadratic.

  • is_qpwa(Power): A logical value indicating whether the atom is quadratic of piecewise affine.

  • .grad(Power): Gives the (sub/super)gradient of the atom w.r.t. each variable

  • .domain(Power): Returns constraints describng the domain of the node

  • get_data(Power): A list containing the output of pow_low, pow_mid, or pow_high depending on the input power.

  • copy(Power): Returns a shallow copy of the power atom

  • name(Power): Returns the expression in string form.

Slots

x

The Expression to be raised to a power.

p

A numeric value indicating the scalar power.

max_denom

The maximum denominator considered in forming a rational approximation of p.


Arithmetic Operations on Problems

Description

Add, subtract, multiply, or divide DCP optimization problems.

Usage

## S4 method for signature 'Problem,missing'
e1 + e2

## S4 method for signature 'Problem,missing'
e1 - e2

## S4 method for signature 'Problem,numeric'
e1 + e2

## S4 method for signature 'numeric,Problem'
e1 + e2

## S4 method for signature 'Problem,Problem'
e1 + e2

## S4 method for signature 'Problem,numeric'
e1 - e2

## S4 method for signature 'numeric,Problem'
e1 - e2

## S4 method for signature 'Problem,Problem'
e1 - e2

## S4 method for signature 'Problem,numeric'
e1 * e2

## S4 method for signature 'numeric,Problem'
e1 * e2

## S4 method for signature 'Problem,numeric'
e1 / e2

Arguments

e1

The left-hand Problem object.

e2

The right-hand Problem object.

Value

A Problem object.


The Problem class.

Description

This class represents a convex optimization problem.

Usage

Problem(objective, constraints = list())

## S4 method for signature 'Problem'
objective(object)

## S4 replacement method for signature 'Problem'
objective(object) <- value

## S4 method for signature 'Problem'
constraints(object)

## S4 replacement method for signature 'Problem'
constraints(object) <- value

## S4 method for signature 'Problem'
value(object)

## S4 replacement method for signature 'Problem'
value(object) <- value

## S4 method for signature 'Problem'
status(object)

## S4 method for signature 'Problem'
is_dcp(object)

## S4 method for signature 'Problem'
is_dgp(object)

## S4 method for signature 'Problem'
is_qp(object)

## S4 method for signature 'Problem'
canonicalize(object)

## S4 method for signature 'Problem'
is_mixed_integer(object)

## S4 method for signature 'Problem'
variables(object)

## S4 method for signature 'Problem'
parameters(object)

## S4 method for signature 'Problem'
constants(object)

## S4 method for signature 'Problem'
atoms(object)

## S4 method for signature 'Problem'
size_metrics(object)

## S4 method for signature 'Problem'
solver_stats(object)

## S4 replacement method for signature 'Problem'
solver_stats(object) <- value

## S4 method for signature 'Problem,character,logical'
get_problem_data(object, solver, gp)

## S4 method for signature 'Problem,character,missing'
get_problem_data(object, solver, gp)

## S4 method for signature 'Problem'
unpack_results(object, solution, chain, inverse_data)

Arguments

objective

A Minimize or Maximize object representing the optimization objective.

constraints

(Optional) A list of Constraint objects representing constraints on the optimization variables.

object

A Problem class.

value

A Minimize or Maximize object (objective), list of Constraint objects (constraints), or numeric scalar (value).

solver

A string indicating the solver that the problem data is for. Call installed_solvers() to see all available.

gp

Is the problem a geometric problem?

solution

A Solution object.

chain

The corresponding solving Chain.

inverse_data

A InverseData object or list containing data necessary for the inversion.

Methods (by generic)

  • objective(Problem): The objective of the problem.

  • objective(Problem) <- value: Set the value of the problem objective.

  • constraints(Problem): A list of the constraints of the problem.

  • constraints(Problem) <- value: Set the value of the problem constraints.

  • value(Problem): The value from the last time the problem was solved (or NA if not solved).

  • value(Problem) <- value: Set the value of the optimal objective.

  • status(Problem): The status from the last time the problem was solved.

  • is_dcp(Problem): A logical value indicating whether the problem statisfies DCP rules.

  • is_dgp(Problem): A logical value indicating whether the problem statisfies DGP rules.

  • is_qp(Problem): A logical value indicating whether the problem is a quadratic program.

  • canonicalize(Problem): The graph implementation of the problem.

  • is_mixed_integer(Problem): logical value indicating whether the problem is a mixed integer program.

  • variables(Problem): List of Variable objects in the problem.

  • parameters(Problem): List of Parameter objects in the problem.

  • constants(Problem): List of Constant objects in the problem.

  • atoms(Problem): List of Atom objects in the problem.

  • size_metrics(Problem): Information about the size of the problem.

  • solver_stats(Problem): Additional information returned by the solver.

  • solver_stats(Problem) <- value: Set the additional information returned by the solver in the problem.

  • get_problem_data(object = Problem, solver = character, gp = logical): Get the problem data passed to the specified solver.

  • get_problem_data(object = Problem, solver = character, gp = missing): Get the problem data passed to the specified solver.

  • unpack_results(Problem): Parses the output from a solver and updates the problem state, including the status, objective value, and values of the primal and dual variables. Assumes the results are from the given solver.

Slots

objective

A Minimize or Maximize object representing the optimization objective.

constraints

(Optional) A list of constraints on the optimization variables.

value

(Internal) Used internally to hold the value of the optimization objective at the solution.

status

(Internal) Used internally to hold the status of the problem solution.

.cached_data

(Internal) Used internally to hold cached matrix data.

.separable_problems

(Internal) Used internally to hold separable problem data.

.size_metrics

(Internal) Used internally to hold size metrics.

.solver_stats

(Internal) Used internally to hold solver statistics.

Examples

x <- Variable(2)
p <- Problem(Minimize(p_norm(x, 2)), list(x >= 0))
is_dcp(p)
x <- Variable(2)
A <- matrix(c(1,-1,-1, 1), nrow = 2)
p <- Problem(Minimize(quad_form(x, A)), list(x >= 0))
is_qp(p)

Parts of a Problem

Description

Get and set the objective, constraints, or size metrics (get only) of a problem.

Usage

objective(object)

objective(object) <- value

constraints(object)

constraints(object) <- value

size_metrics(object)

Arguments

object

A Problem object.

value

The value to assign to the slot.

Value

For getter functions, the requested slot of the object. x <- Variable() prob <- Problem(Minimize(x^2), list(x >= 5)) objective(prob) constraints(prob) size_metrics(prob)

objective(prob) <- Maximize(sqrt(x)) constraints(prob) <- list(x <= 10) objective(prob) constraints(prob)


Product of Entries

Description

The product of entries in a vector or matrix.

Usage

prod_entries(..., axis = NA_real_, keepdims = FALSE)

## S3 method for class 'Expression'
prod(..., na.rm = FALSE)

Arguments

...

Numeric scalar, vector, matrix, or Expression objects.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.

keepdims

(Optional) Should dimensions be maintained when applying the atom along an axis? If FALSE, result will be collapsed into an nx1n x 1 column vector. The default is FALSE.

na.rm

(Unimplemented) A logical value indicating whether missing values should be removed.

Details

This atom is log-log affine, but it is neither convex nor concave.

Value

An Expression representing the product of the entries of the input.

Examples

n <- 2
X <- Variable(n, n, pos=TRUE)
obj <- sum(X)
constraints <- list(prod_entries(X) == 4)
prob <- Problem(Minimize(obj), constraints)
result <- solve(prob, gp=TRUE)
result$value
result$getValue(X)

n <- 2
X <- Variable(n, n, pos=TRUE)
obj <- sum(X)
constraints <- list(prod(X) == 4)
prob <- Problem(Minimize(obj), constraints)
result <- solve(prob, gp=TRUE)
result$value

The ProdEntries class.

Description

The product of the entries in an expression.

Usage

ProdEntries(..., axis = NA_real_, keepdims = FALSE)

## S4 method for signature 'ProdEntries'
to_numeric(object, values)

## S4 method for signature 'ProdEntries'
sign_from_args(object)

## S4 method for signature 'ProdEntries'
is_atom_convex(object)

## S4 method for signature 'ProdEntries'
is_atom_concave(object)

## S4 method for signature 'ProdEntries'
is_atom_log_log_convex(object)

## S4 method for signature 'ProdEntries'
is_atom_log_log_concave(object)

## S4 method for signature 'ProdEntries'
is_incr(object, idx)

## S4 method for signature 'ProdEntries'
is_decr(object, idx)

## S4 method for signature 'ProdEntries'
.column_grad(object, value)

## S4 method for signature 'ProdEntries'
.grad(object, values)

Arguments

...

Expression objects, vectors, or matrices.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.

keepdims

(Optional) Should dimensions be maintained when applying the atom along an axis? If FALSE, result will be collapsed into an nx1n x 1 column vector. The default is FALSE.

object

A ProdEntries object.

values

A list of numeric values for the arguments

idx

An index into the atom.

value

A numeric value.

Methods (by generic)

  • to_numeric(ProdEntries): The product of all the entries.

  • sign_from_args(ProdEntries): Returns the sign (is positive, is negative) of the atom.

  • is_atom_convex(ProdEntries): Is the atom convex?

  • is_atom_concave(ProdEntries): Is the atom concave?

  • is_atom_log_log_convex(ProdEntries): Is the atom log-log convex?

  • is_atom_log_log_concave(ProdEntries): is the atom log-log concave?

  • is_incr(ProdEntries): Is the atom weakly increasing in the argument idx?

  • is_decr(ProdEntries): Is the atom weakly decreasing in the argument idx?

  • .column_grad(ProdEntries): Gives the (sub/super)gradient of the atom w.r.t. each column variable

  • .grad(ProdEntries): Gives the (sub/super)gradient of the atom w.r.t. each variable

Slots

expr

An Expression representing a vector or matrix.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.


Project Value

Description

Project a value onto the attribute set of a Leaf. A sensible idiom is value(leaf) = project(leaf, val).

Usage

project(object, value)

project_and_assign(object, value)

Arguments

object

A Leaf object.

value

The assigned value.

Value

The value rounded to the attribute type.


The Promote class.

Description

This class represents the promotion of a scalar expression into a vector/matrix.

Usage

Promote(expr, promoted_dim)

## S4 method for signature 'Promote'
to_numeric(object, values)

## S4 method for signature 'Promote'
is_symmetric(object)

## S4 method for signature 'Promote'
dim_from_args(object)

## S4 method for signature 'Promote'
is_atom_log_log_convex(object)

## S4 method for signature 'Promote'
is_atom_log_log_concave(object)

## S4 method for signature 'Promote'
get_data(object)

## S4 method for signature 'Promote'
graph_implementation(object, arg_objs, dim, data = NA_real_)

Arguments

expr

An Expression or numeric constant.

The desired dimensions.

object

A Promote object.

values

A list containing the value to promote.

arg_objs

A list of linear expressions for each argument.

dim

A vector representing the dimensions of the resulting expression.

data

A list of additional data required by the atom.

Methods (by generic)

  • to_numeric(Promote): Promotes the value to the new dimensions.

  • is_symmetric(Promote): Is the expression symmetric?

  • dim_from_args(Promote): Returns the (row, col) dimensions of the expression.

  • is_atom_log_log_convex(Promote): Is the atom log-log convex?

  • is_atom_log_log_concave(Promote): Is the atom log-log concave?

  • get_data(Promote): Returns information needed to reconstruct the expression besides the args.

  • graph_implementation(Promote): The graph implementation of the atom.

Slots

expr

An Expression or numeric constant.

promoted_dim

The desired dimensions.


Given a problem returns a PSD constraint

Description

Given a problem returns a PSD constraint

Usage

psd_coeff_offset(problem, c)

Arguments

problem

A Problem object.

c

A vector of coefficients.

Value

Returns an array G and vector h such that the given constraint is equivalent to GzPSDhG*z \leq_{PSD} h.


The PSDWrap class.

Description

A no-op wrapper to assert the input argument is positive semidefinite.

Usage

PSDWrap(arg)

## S4 method for signature 'PSDWrap'
is_psd(object)

Arguments

arg

A Expression object or matrix.

object

A PSDWrap object.

Methods (by generic)

  • is_psd(PSDWrap): Is the atom positive semidefinite?


Solve a DCP Problem

Description

Solve a DCP compliant optimization problem.

Usage

psolve(
  object,
  solver = NA,
  ignore_dcp = FALSE,
  warm_start = FALSE,
  verbose = FALSE,
  parallel = FALSE,
  gp = FALSE,
  feastol = NULL,
  reltol = NULL,
  abstol = NULL,
  num_iter = NULL,
  ...
)

## S4 method for signature 'Problem'
psolve(
  object,
  solver = NA,
  ignore_dcp = FALSE,
  warm_start = FALSE,
  verbose = FALSE,
  parallel = FALSE,
  gp = FALSE,
  feastol = NULL,
  reltol = NULL,
  abstol = NULL,
  num_iter = NULL,
  ...
)

## S4 method for signature 'Problem,ANY'
solve(a, b = NA, ...)

Arguments

object, a

A Problem object.

solver, b

(Optional) A string indicating the solver to use. Defaults to "ECOS".

ignore_dcp

(Optional) A logical value indicating whether to override the DCP check for a problem.

warm_start

(Optional) A logical value indicating whether the previous solver result should be used to warm start.

verbose

(Optional) A logical value indicating whether to print additional solver output.

parallel

(Optional) A logical value indicating whether to solve in parallel if the problem is separable.

gp

(Optional) A logical value indicating whether the problem is a geometric program. Defaults to FALSE.

feastol

The feasible tolerance on the primal and dual residual.

reltol

The relative tolerance on the duality gap.

abstol

The absolute tolerance on the duality gap.

num_iter

The maximum number of iterations.

...

Additional options that will be passed to the specific solver. In general, these options will override any default settings imposed by CVXR.

Value

A list containing the solution to the problem:

status

The status of the solution. Can be "optimal", "optimal_inaccurate", "infeasible", "infeasible_inaccurate", "unbounded", "unbounded_inaccurate", or "solver_error".

value

The optimal value of the objective function.

solver

The name of the solver.

solve_time

The time (in seconds) it took for the solver to solve the problem.

setup_time

The time (in seconds) it took for the solver to set up the problem.

num_iters

The number of iterations the solver had to go through to find a solution.

getValue

A function that takes a Variable object and retrieves its primal value.

getDualValue

A function that takes a Constraint object and retrieves its dual value(s).

Examples

a <- Variable(name = "a")
prob <- Problem(Minimize(norm_inf(a)), list(a >= 2))
result <- psolve(prob, solver = "ECOS", verbose = TRUE)
result$status
result$value
result$getValue(a)
result$getDualValue(constraints(prob)[[1]])

The Qp2SymbolicQp class.

Description

This class reduces a quadratic problem to a problem that consists of affine expressions and symbolic quadratic forms.


The QpMatrixStuffing class.

Description

This class fills in numeric values for the problem instance and outputs a DCP-compliant minimization problem with an objective of the form

Details

QuadForm(x, p) + t(q)

and Zero/NonPos constraints, both of which exclusively carry affine arguments


A QP solver interface.

Description

A QP solver interface.

Usage

## S4 method for signature 'QpSolver,Problem'
accepts(object, problem)

## S4 method for signature 'QpSolver,Problem'
perform(object, problem)

Arguments

object

A QpSolver object.

problem

A Problem object.

Methods (by generic)

  • accepts(object = QpSolver, problem = Problem): Is this a QP problem?

  • perform(object = QpSolver, problem = Problem): Constructs a QP problem data stored in a list


Quadratic Form

Description

The quadratic form, xTPxx^TPx.

Usage

quad_form(x, P)

Arguments

x

An Expression or vector.

P

An Expression or matrix.

Value

An Expression representing the quadratic form evaluated at the input.

Examples

x <- Variable(2)
P <- rbind(c(4,0), c(0,9))
prob <- Problem(Minimize(quad_form(x,P)), list(x >= 1))
result <- solve(prob)
result$value
result$getValue(x)

A <- Variable(2,2)
c <- c(1,2)
prob <- Problem(Minimize(quad_form(c,A)), list(A >= 1))
result <- solve(prob)
result$value
result$getValue(A)

Quadratic over Linear

Description

i,jXi,j2/y\sum_{i,j} X_{i,j}^2/y.

Usage

quad_over_lin(x, y)

Arguments

x

An Expression, vector, or matrix.

y

A scalar Expression or numeric constant.

Value

An Expression representing the quadratic over linear function value evaluated at the input.

Examples

x <- Variable(3,2)
y <- Variable()
val <- cbind(c(-1,2,-2), c(-1,2,-2))
prob <- Problem(Minimize(quad_over_lin(x,y)), list(x == val, y <= 2))
result <- solve(prob)
result$value
result$getValue(x)
result$getValue(y)

The QuadForm class.

Description

This class represents the quadratic form xTPxx^T P x

Usage

QuadForm(x, P)

## S4 method for signature 'QuadForm'
name(x)

## S4 method for signature 'QuadForm'
allow_complex(object)

## S4 method for signature 'QuadForm'
to_numeric(object, values)

## S4 method for signature 'QuadForm'
validate_args(object)

## S4 method for signature 'QuadForm'
sign_from_args(object)

## S4 method for signature 'QuadForm'
dim_from_args(object)

## S4 method for signature 'QuadForm'
is_atom_convex(object)

## S4 method for signature 'QuadForm'
is_atom_concave(object)

## S4 method for signature 'QuadForm'
is_atom_log_log_convex(object)

## S4 method for signature 'QuadForm'
is_atom_log_log_concave(object)

## S4 method for signature 'QuadForm'
is_incr(object, idx)

## S4 method for signature 'QuadForm'
is_decr(object, idx)

## S4 method for signature 'QuadForm'
is_quadratic(object)

## S4 method for signature 'QuadForm'
is_pwl(object)

## S4 method for signature 'QuadForm'
.grad(object, values)

Arguments

x

An Expression or numeric vector.

P

An Expression, numeric matrix, or vector.

object

A QuadForm object.

values

A list of numeric values for the arguments

idx

An index into the atom.

Methods (by generic)

  • name(QuadForm): The name and arguments of the atom.

  • allow_complex(QuadForm): Does the atom handle complex numbers?

  • to_numeric(QuadForm): Returns the quadratic form.

  • validate_args(QuadForm): Checks the dimensions of the arguments.

  • sign_from_args(QuadForm): Returns the sign (is positive, is negative) of the atom.

  • dim_from_args(QuadForm): The dimensions of the atom.

  • is_atom_convex(QuadForm): Is the atom convex?

  • is_atom_concave(QuadForm): Is the atom concave?

  • is_atom_log_log_convex(QuadForm): Is the atom log-log convex?

  • is_atom_log_log_concave(QuadForm): Is the atom log-log concave?

  • is_incr(QuadForm): Is the atom weakly increasing in the argument idx?

  • is_decr(QuadForm): Is the atom weakly decreasing in the argument idx?

  • is_quadratic(QuadForm): Is the atom quadratic?

  • is_pwl(QuadForm): Is the atom piecewise linear?

  • .grad(QuadForm): Gives the (sub/super)gradient of the atom w.r.t. each variable

Slots

x

An Expression or numeric vector.

P

An Expression, numeric matrix, or vector.


The QuadOverLin class.

Description

This class represents the sum of squared entries in X divided by a scalar y, i,jXi,j2/y\sum_{i,j} X_{i,j}^2/y.

Usage

QuadOverLin(x, y)

## S4 method for signature 'QuadOverLin'
allow_complex(object)

## S4 method for signature 'QuadOverLin'
to_numeric(object, values)

## S4 method for signature 'QuadOverLin'
validate_args(object)

## S4 method for signature 'QuadOverLin'
dim_from_args(object)

## S4 method for signature 'QuadOverLin'
sign_from_args(object)

## S4 method for signature 'QuadOverLin'
is_atom_convex(object)

## S4 method for signature 'QuadOverLin'
is_atom_concave(object)

## S4 method for signature 'QuadOverLin'
is_atom_log_log_convex(object)

## S4 method for signature 'QuadOverLin'
is_atom_log_log_concave(object)

## S4 method for signature 'QuadOverLin'
is_incr(object, idx)

## S4 method for signature 'QuadOverLin'
is_decr(object, idx)

## S4 method for signature 'QuadOverLin'
is_quadratic(object)

## S4 method for signature 'QuadOverLin'
is_qpwa(object)

## S4 method for signature 'QuadOverLin'
.domain(object)

## S4 method for signature 'QuadOverLin'
.grad(object, values)

Arguments

x

An Expression or numeric matrix.

y

A scalar Expression or numeric constant.

object

A QuadOverLin object.

values

A list of numeric values for the arguments

idx

An index into the atom.

Methods (by generic)

  • allow_complex(QuadOverLin): Does the atom handle complex numbers?

  • to_numeric(QuadOverLin): The sum of the entries of x squared over y.

  • validate_args(QuadOverLin): Check the dimensions of the arguments.

  • dim_from_args(QuadOverLin): The atom is a scalar.

  • sign_from_args(QuadOverLin): The atom is positive.

  • is_atom_convex(QuadOverLin): The atom is convex.

  • is_atom_concave(QuadOverLin): The atom is not concave.

  • is_atom_log_log_convex(QuadOverLin): Is the atom log-log convex?

  • is_atom_log_log_concave(QuadOverLin): Is the atom log-log concave?

  • is_incr(QuadOverLin): A logical value indicating whether the atom is weakly increasing in argument idx.

  • is_decr(QuadOverLin): A logical value indicating whether the atom is weakly decreasing in argument idx.

  • is_quadratic(QuadOverLin): Quadratic if x is affine and y is constant.

  • is_qpwa(QuadOverLin): Quadratic of piecewise affine if x is piecewise linear and y is constant.

  • .domain(QuadOverLin): Returns constraints describing the domain of the node

  • .grad(QuadOverLin): Gives the (sub/super)gradient of the atom w.r.t. each variable

Slots

x

An Expression or numeric matrix.

y

A scalar Expression or numeric constant.


The Rdict class.

Description

A simple, internal dictionary composed of a list of keys and a list of values. These keys/values can be any type, including nested lists, S4 objects, etc. Incredibly inefficient hack, but necessary for the geometric mean atom, since it requires mixed numeric/gmp objects.

Usage

Rdict(keys = list(), values = list())

## S4 method for signature 'Rdict'
x$name

## S4 method for signature 'Rdict'
length(x)

## S4 method for signature 'ANY,Rdict'
is.element(el, set)

## S4 method for signature 'Rdict,ANY,ANY,ANY'
x[i, j, ..., drop = TRUE]

## S4 replacement method for signature 'Rdict,ANY,ANY,ANY'
x[i, j, ...] <- value

Arguments

keys

A list of keys.

values

A list of values corresponding to the keys.

x, set

A Rdict object.

name

Either "keys" for a list of keys, "values" for a list of values, or "items" for a list of lists where each nested list is a (key, value) pair.

el

The element to search the dictionary of values for.

i

A key into the dictionary.

j, drop, ...

Unused arguments.

value

The value to assign to key i.

Slots

keys

A list of keys.

values

A list of values corresponding to the keys.


The Rdictdefault class.

Description

This is a subclass of Rdict that contains an additional slot for a default function, which assigns a value to an input key. Only partially implemented, but working well enough for the geometric mean. Will be combined with Rdict later.

Usage

Rdictdefault(keys = list(), values = list(), default)

## S4 method for signature 'Rdictdefault,ANY,ANY,ANY'
x[i, j, ..., drop = TRUE]

Arguments

keys

A list of keys.

values

A list of values corresponding to the keys.

default

A function that takes as input a key and outputs a value to assign to that key.

x

A Rdictdefault object.

i

A key into the dictionary.

j, drop, ...

Unused arguments.

Slots

keys

A list of keys.

values

A list of values corresponding to the keys.

default

A function that takes as input a key and outputs a value to assign to that key.

See Also

Rdict


The Real class.

Description

This class represents the real part of an expression.

Usage

Real(expr)

## S4 method for signature 'Real'
to_numeric(object, values)

## S4 method for signature 'Real'
dim_from_args(object)

## S4 method for signature 'Real'
is_imag(object)

## S4 method for signature 'Real'
is_complex(object)

## S4 method for signature 'Real'
is_symmetric(object)

Arguments

expr

An Expression representing a vector or matrix.

object

An Real object.

values

A list of arguments to the atom.

Methods (by generic)

  • to_numeric(Real): The imaginary part of the given value.

  • dim_from_args(Real): The dimensions of the atom.

  • is_imag(Real): Is the atom imaginary?

  • is_complex(Real): Is the atom complex valued?

  • is_symmetric(Real): Is the atom symmetric?

Slots

expr

An Expression representing a vector or matrix.


Reduce a Problem

Description

Reduces the owned problem to an equivalent problem.

Usage

reduce(object)

Arguments

object

A Reduction object.

Value

An equivalent problem, encoded either as a Problem object or a list.


The Reduction class.

Description

This virtual class represents a reduction, an actor that transforms a problem into an equivalent problem. By equivalent, we mean that there exists a mapping between solutions of either problem: if we reduce a problem AA to another problem BB and then proceed to find a solution to BB, we can convert it to a solution of AA with at most a moderate amount of effort.

Usage

## S4 method for signature 'Reduction,Problem'
accepts(object, problem)

## S4 method for signature 'Reduction'
reduce(object)

## S4 method for signature 'Reduction,Solution'
retrieve(object, solution)

## S4 method for signature 'Reduction,Problem'
perform(object, problem)

## S4 method for signature 'Reduction,Solution,list'
invert(object, solution, inverse_data)

Arguments

object

A Reduction object.

problem

A Problem object.

solution

A Solution to a problem that generated the inverse data.

inverse_data

The data encoding the original problem.

Details

Every reduction supports three methods: accepts, perform, and invert. The accepts method of a particular reduction codifies the types of problems that it is applicable to, the perform method takes a problem and reduces it to a (new) equivalent form, and the invert method maps solutions from reduced-to problems to their problems of provenance.

Methods (by generic)

  • accepts(object = Reduction, problem = Problem): States whether the reduction accepts a problem.

  • reduce(Reduction): Reduces the owned problem to an equivalent problem.

  • retrieve(object = Reduction, solution = Solution): Retrieves a solution to the owned problem.

  • perform(object = Reduction, problem = Problem): Performs the reduction on a problem and returns an equivalent problem.

  • invert(object = Reduction, solution = Solution, inverse_data = list): Returns a solution to the original problem given the inverse data.


The ReductionSolver class.

Description

The ReductionSolver class.

Usage

## S4 method for signature 'ReductionSolver'
mip_capable(solver)

## S4 method for signature 'ReductionSolver'
name(x)

## S4 method for signature 'ReductionSolver'
import_solver(solver)

## S4 method for signature 'ReductionSolver'
is_installed(solver)

## S4 method for signature 'ReductionSolver'
solve_via_data(
  object,
  data,
  warm_start,
  verbose,
  feastol,
  reltol,
  abstol,
  num_iter,
  solver_opts,
  solver_cache
)

## S4 method for signature 'ReductionSolver,ANY'
reduction_solve(
  object,
  problem,
  warm_start,
  verbose,
  feastol,
  reltol,
  abstol,
  num_iter,
  solver_opts
)

## S4 method for signature 'ECOS'
solve_via_data(
  object,
  data,
  warm_start,
  verbose,
  feastol,
  reltol,
  abstol,
  num_iter,
  solver_opts,
  solver_cache
)

Arguments

solver, object, x

A ReductionSolver object.

data

Data generated via an apply call.

warm_start

A boolean of whether to warm start the solver.

verbose

An integer number indicating level of solver verbosity.

feastol

The feasible tolerance on the primal and dual residual.

reltol

The relative tolerance on the duality gap.

abstol

The absolute tolerance on the duality gap.

num_iter

The maximum number of iterations.

solver_opts

A list of Solver specific options

solver_cache

Cache for the solver.

problem

A Problem object.

Methods (by generic)

  • mip_capable(ReductionSolver): Can the solver handle mixed-integer programs?

  • name(ReductionSolver): Returns the name of the solver

  • import_solver(ReductionSolver): Imports the solver

  • is_installed(ReductionSolver): Is the solver installed?

  • solve_via_data(ReductionSolver): Solve a problem represented by data returned from apply.

  • reduction_solve(object = ReductionSolver, problem = ANY): Solve a problem represented by data returned from apply.

  • solve_via_data(ECOS): Solve a problem represented by data returned from apply.


Reset Options

Description

Reset the global package variable .CVXR.options.

Usage

resetOptions()

Value

The default value of CVXR package global .CVXR.options.

Examples

## Not run: 
  resetOptions()

## End(Not run)

Reshape an Expression

Description

This function vectorizes an expression, then unvectorizes it into a new shape. Entries are stored in column-major order.

Usage

reshape_expr(expr, new_dim)

Arguments

expr

An Expression, vector, or matrix.

new_dim

The new dimensions.

Value

An Expression representing the reshaped input.

Examples

x <- Variable(4)
mat <- cbind(c(1,-1), c(2,-2))
vec <- matrix(1:4)
expr <- reshape_expr(x,c(2,2))
obj <- Minimize(sum(mat %*% expr))
prob <- Problem(obj, list(x == vec))
result <- solve(prob)
result$value

A <- Variable(2,2)
c <- 1:4
expr <- reshape_expr(A,c(4,1))
obj <- Minimize(t(expr) %*% c)
constraints <- list(A == cbind(c(-1,-2), c(3,4)))
prob <- Problem(obj, constraints)
result <- solve(prob)
result$value
result$getValue(expr)
result$getValue(reshape_expr(expr,c(2,2)))

C <- Variable(3,2)
expr <- reshape_expr(C,c(2,3))
mat <- rbind(c(1,-1), c(2,-2))
C_mat <- rbind(c(1,4), c(2,5), c(3,6))
obj <- Minimize(sum(mat %*% expr))
prob <- Problem(obj, list(C == C_mat))
result <- solve(prob)
result$value
result$getValue(expr)

a <- Variable()
c <- cbind(c(1,-1), c(2,-2))
expr <- reshape_expr(c * a,c(1,4))
obj <- Minimize(expr %*% (1:4))
prob <- Problem(obj, list(a == 2))
result <- solve(prob)
result$value
result$getValue(expr)

expr <- reshape_expr(c * a,c(4,1))
obj <- Minimize(t(expr) %*% (1:4))
prob <- Problem(obj, list(a == 2))
result <- solve(prob)
result$value
result$getValue(expr)

The Reshape class.

Description

This class represents the reshaping of an expression. The operator vectorizes the expression, then unvectorizes it into the new dimensions. Entries are stored in column-major order.

Usage

Reshape(expr, new_dim)

## S4 method for signature 'Reshape'
to_numeric(object, values)

## S4 method for signature 'Reshape'
validate_args(object)

## S4 method for signature 'Reshape'
dim_from_args(object)

## S4 method for signature 'Reshape'
is_atom_log_log_convex(object)

## S4 method for signature 'Reshape'
is_atom_log_log_concave(object)

## S4 method for signature 'Reshape'
get_data(object)

## S4 method for signature 'Reshape'
graph_implementation(object, arg_objs, dim, data = NA_real_)

Arguments

expr

An Expression or numeric matrix.

new_dim

The new dimensions.

object

A Reshape object.

values

A list of arguments to the atom.

arg_objs

A list of linear expressions for each argument.

dim

A vector representing the dimensions of the resulting expression.

data

A list of additional data required by the atom.

Methods (by generic)

  • to_numeric(Reshape): Reshape the value into the specified dimensions.

  • validate_args(Reshape): Check the new shape has the same number of entries as the old.

  • dim_from_args(Reshape): The c(rows, cols) dimensions of the new expression.

  • is_atom_log_log_convex(Reshape): Is the atom log-log convex?

  • is_atom_log_log_concave(Reshape): Is the atom log-log concave?

  • get_data(Reshape): Returns a list containing the new shape.

  • graph_implementation(Reshape): The graph implementation of the atom.

Slots

expr

An Expression or numeric matrix.

new_dim

The new dimensions.


Constraint Residual

Description

The residual expression of a constraint, i.e. the amount by which it is violated, and the value of that violation. For instance, if our constraint is g(x)0g(x) \leq 0, the residual is max(g(x),0)max(g(x), 0) applied elementwise.

Usage

residual(object)

violation(object)

Arguments

object

A Constraint object.

Value

A Expression representing the residual, or the value of this expression.


Retrieve Solution

Description

Retrieves a solution to the owned problem.

Usage

retrieve(object, solution)

Arguments

object

A Reduction object.

solution

A Solution object.

Value

A Solution to the problem emitted by reduce.


Utility methods for special handling of semidefinite constraints.

Description

Utility methods for special handling of semidefinite constraints.

Usage

scaled_lower_tri(matrix)

Arguments

matrix

The matrix to get the lower triangular matrix for

Value

The lower triangular part of the matrix, stacked in column-major order


Utility methods for special handling of semidefinite constraints.

Description

Utility methods for special handling of semidefinite constraints.

Usage

scaled_upper_tri(matrix)

Arguments

matrix

The matrix to get the upper triangular matrix for

Value

The upper triangular part of the matrix, stacked in column-major order


Scalene Function

Description

The elementwise weighted sum of the positive and negative portions of an expression, αmax(xi,0)βmin(xi,0)\alpha\max(x_i,0) - \beta\min(x_i,0). This is equivalent to alpha*pos(x) + beta*neg(x).

Usage

scalene(x, alpha, beta)

Arguments

x

An Expression, vector, or matrix.

alpha

The weight on the positive portion of x.

beta

The weight on othe negative portion of x.

Value

An Expression representing the scalene function evaluated at the input.

Examples

## Not run: 
A <- Variable(2,2)
val <- cbind(c(-5,2), c(-3,1))
prob <- Problem(Minimize(scalene(A,2,3)[1,1]), list(A == val))
result <- solve(prob)
result$value
result$getValue(scalene(A, 0.7, 0.3))

## End(Not run)

An interface for the SCS solver

Description

An interface for the SCS solver

Usage

SCS()

## S4 method for signature 'SCS'
mip_capable(solver)

## S4 method for signature 'SCS'
status_map(solver, status)

## S4 method for signature 'SCS'
name(x)

## S4 method for signature 'SCS'
import_solver(solver)

## S4 method for signature 'SCS'
reduction_format_constr(object, problem, constr, exp_cone_order)

## S4 method for signature 'SCS,Problem'
perform(object, problem)

## S4 method for signature 'SCS,list,list'
invert(object, solution, inverse_data)

## S4 method for signature 'SCS'
solve_via_data(
  object,
  data,
  warm_start,
  verbose,
  feastol,
  reltol,
  abstol,
  num_iter,
  solver_opts,
  solver_cache
)

Arguments

solver, object, x

A SCS object.

status

A status code returned by the solver.

problem

A Problem object.

constr

A Constraint to format.

exp_cone_order

A list indicating how the exponential cone arguments are ordered.

solution

The raw solution returned by the solver.

inverse_data

A list containing data necessary for the inversion.

data

Data generated via an apply call.

warm_start

A boolean of whether to warm start the solver.

verbose

A boolean of whether to enable solver verbosity.

feastol

The feasible tolerance on the primal and dual residual.

reltol

The relative tolerance on the duality gap.

abstol

The absolute tolerance on the duality gap.

num_iter

The maximum number of iterations.

solver_opts

A list of Solver specific options

solver_cache

Cache for the solver.

Methods (by generic)

  • mip_capable(SCS): Can the solver handle mixed-integer programs?

  • status_map(SCS): Converts status returned by SCS solver to its respective CVXPY status.

  • name(SCS): Returns the name of the solver

  • import_solver(SCS): Imports the solver

  • reduction_format_constr(SCS): Return a linear operator to multiply by PSD constraint coefficients.

  • perform(object = SCS, problem = Problem): Returns a new problem and data for inverting the new solution

  • invert(object = SCS, solution = list, inverse_data = list): Returns the solution to the original problem given the inverse_data.

  • solve_via_data(SCS): Solve a problem represented by data returned from apply.


Utility method for formatting a ConeDims instance into a dictionary that can be supplied to SCS.

Description

Utility method for formatting a ConeDims instance into a dictionary that can be supplied to SCS.

Usage

SCS.dims_to_solver_dict(cone_dims)

Arguments

cone_dims

A ConeDims instance.

Value

The dimensions of the cones.


Extracts the dual value for constraint starting at offset.

Description

Special cases PSD constraints, as per the SCS specification.

Usage

SCS.extract_dual_value(result_vec, offset, constraint)

Arguments

result_vec

The vector to extract dual values from.

offset

The starting point of the vector to extract from.

constraint

A Constraint object.

Value

The dual values for the corresponding PSD constraints


Set ID Counter

Description

Set the CVXR variable/constraint identification number counter.

Usage

setIdCounter(value = 0L)

Arguments

value

The value to assign as ID.

Value

the changed value of the package global .CVXR.options.

Examples

## Not run: 
  setIdCounter(value = 0L)

## End(Not run)

Maximum Singular Value

Description

The maximum singular value of a matrix.

Usage

sigma_max(A = A)

Arguments

A

An Expression or matrix.

Value

An Expression representing the maximum singular value.

Examples

C <- Variable(3,2)
val <- rbind(c(1,2), c(3,4), c(5,6))
obj <- sigma_max(C)
constr <- list(C == val)
prob <- Problem(Minimize(obj), constr)
result <- solve(prob, solver = "SCS")
result$value
result$getValue(C)

The SigmaMax class.

Description

The maximum singular value of a matrix.

Usage

SigmaMax(A = A)

## S4 method for signature 'SigmaMax'
to_numeric(object, values)

## S4 method for signature 'SigmaMax'
allow_complex(object)

## S4 method for signature 'SigmaMax'
dim_from_args(object)

## S4 method for signature 'SigmaMax'
sign_from_args(object)

## S4 method for signature 'SigmaMax'
is_atom_convex(object)

## S4 method for signature 'SigmaMax'
is_atom_concave(object)

## S4 method for signature 'SigmaMax'
is_incr(object, idx)

## S4 method for signature 'SigmaMax'
is_decr(object, idx)

## S4 method for signature 'SigmaMax'
.grad(object, values)

Arguments

A

An Expression or matrix.

object

A SigmaMax object.

values

A list of numeric values for the arguments

idx

An index into the atom.

Methods (by generic)

  • to_numeric(SigmaMax): The largest singular value of A.

  • allow_complex(SigmaMax): Does the atom handle complex numbers?

  • dim_from_args(SigmaMax): The atom is a scalar.

  • sign_from_args(SigmaMax): The atom is positive.

  • is_atom_convex(SigmaMax): The atom is convex.

  • is_atom_concave(SigmaMax): The atom is concave.

  • is_incr(SigmaMax): The atom is not monotonic in any argument.

  • is_decr(SigmaMax): The atom is not monotonic in any argument.

  • .grad(SigmaMax): Gives the (sub/super)gradient of the atom w.r.t. each variable

Slots

A

An Expression or numeric matrix.


Atom Sign

Description

Determine the sign of an atom based on its arguments.

Usage

sign_from_args(object)

## S4 method for signature 'Atom'
sign_from_args(object)

Arguments

object

An Atom object.

Value

A logical vector c(is positive, is negative) indicating the sign of the atom.


Sign Properties

Description

Determine if an expression is positive, negative, or zero.

Usage

is_zero(object)

is_nonneg(object)

is_nonpos(object)

Arguments

object

An Expression object.

Value

A logical value.

Examples

pos <- Constant(1)
neg <- Constant(-1)
zero <- Constant(0)
unknown <- Variable()

is_zero(pos)
is_zero(-zero)
is_zero(unknown)
is_zero(pos + neg)

is_nonneg(pos + zero)
is_nonneg(pos * neg)
is_nonneg(pos - neg)
is_nonneg(unknown)

is_nonpos(-pos)
is_nonpos(pos + neg)
is_nonpos(neg * zero)
is_nonpos(neg - pos)

Sign of Expression

Description

The sign of an expression.

Usage

## S4 method for signature 'Expression'
sign(x)

Arguments

x

An Expression object.

Value

A string indicating the sign of the expression, either "ZERO", "NONNEGATIVE", "NONPOSITIVE", or "UNKNOWN".


Size of Expression

Description

The size of an expression.

Usage

size(object)

## S4 method for signature 'ListORExpr'
size(object)

Arguments

object

An Expression object.

Value

A vector with two elements c(row, col) representing the dimensions of the expression.

Examples

x <- Variable()
y <- Variable(3)
z <- Variable(3,2)

size(x)
size(y)
size(z)
size(x + y)
size(z - x)

Size Properties

Description

Determine if an expression is a scalar, vector, or matrix.

Usage

is_scalar(object)

is_vector(object)

is_matrix(object)

Arguments

object

An Expression object.

Value

A logical value.

Examples

x <- Variable()
y <- Variable(3)
z <- Variable(3,2)

is_scalar(x)
is_scalar(y)
is_scalar(x + y)

is_vector(x)
is_vector(y)
is_vector(2*z)

is_matrix(x)
is_matrix(y)
is_matrix(z)
is_matrix(z - x)

The SizeMetrics class.

Description

This class contains various metrics regarding the problem size.

Usage

SizeMetrics(problem)

Arguments

problem

A Problem object.

Slots

num_scalar_variables

The number of scalar variables in the problem.

num_scalar_data

The number of constants used across all matrices and vectors in the problem. Some constants are not apparent when the problem is constructed. For example, the sum_squares expression is a wrapper for a quad_over_lin expression with a constant 1 in the denominator.

num_scalar_eq_constr

The number of scalar equality constraints in the problem.

num_scalar_leq_constr

The number of scalar inequality constraints in the problem.

max_data_dimension

The longest dimension of any data block constraint or parameter.

max_big_small_squared

The maximum value of (big)(small)^2 over all data blocks of the problem, where (big) is the larger dimension and (small) is the smaller dimension for each data block.


The SOC class.

Description

This class represents a second-order cone constraint, i.e. x2t\|x\|_2 \leq t.

Usage

SOC(t, X, axis = 2, id = NA_integer_)

## S4 method for signature 'SOC'
as.character(x)

## S4 method for signature 'SOC'
residual(object)

## S4 method for signature 'SOC'
get_data(object)

## S4 method for signature 'SOC'
format_constr(object, eq_constr, leq_constr, dims, solver)

## S4 method for signature 'SOC'
num_cones(object)

## S4 method for signature 'SOC'
size(object)

## S4 method for signature 'SOC'
cone_sizes(object)

## S4 method for signature 'SOC'
is_dcp(object)

## S4 method for signature 'SOC'
is_dgp(object)

## S4 method for signature 'SOC'
canonicalize(object)

Arguments

t

The scalar part of the second-order constraint.

X

A matrix whose rows/columns are each a cone.

axis

The dimension along which to slice: 1 indicates rows, and 2 indicates columns. The default is 2.

id

(Optional) A numeric value representing the constraint ID.

x, object

A SOC object.

eq_constr

A list of the equality constraints in the canonical problem.

leq_constr

A list of the inequality constraints in the canonical problem.

dims

A list with the dimensions of the conic constraints.

solver

A string representing the solver to be called.

Methods (by generic)

  • residual(SOC): The residual of the second-order constraint.

  • get_data(SOC): Information needed to reconstruct the object aside from the args.

  • format_constr(SOC): Format SOC constraints as inequalities for the solver.

  • num_cones(SOC): The number of elementwise cones.

  • size(SOC): The number of entries in the combined cones.

  • cone_sizes(SOC): The dimensions of the second-order cones.

  • is_dcp(SOC): An SOC constraint is DCP if each of its arguments is affine.

  • is_dgp(SOC): Is the constraint DGP?

  • canonicalize(SOC): The canonicalization of the constraint.

Slots

t

The scalar part of the second-order constraint.

X

A matrix whose rows/columns are each a cone.

axis

The dimension along which to slice: 1 indicates rows, and 2 indicates columns. The default is 2.


The SOCAxis class.

Description

This class represents a second-order cone constraint for each row/column. It Assumes tt is a vector the same length as XX's rows (columns) for axis == 1 (2).

Usage

SOCAxis(t, X, axis, id = NA_integer_)

## S4 method for signature 'SOCAxis'
as.character(x)

## S4 method for signature 'SOCAxis'
format_constr(object, eq_constr, leq_constr, dims, solver)

## S4 method for signature 'SOCAxis'
num_cones(object)

## S4 method for signature 'SOCAxis'
cone_sizes(object)

## S4 method for signature 'SOCAxis'
size(object)

Arguments

t

The scalar part of the second-order constraint.

X

A matrix whose rows/columns are each a cone.

axis

The dimension across which to take the slice: 1 indicates rows, and 2 indicates columns.

id

(Optional) A numeric value representing the constraint ID.

x, object

A SOCAxis object.

eq_constr

A list of the equality constraints in the canonical problem.

leq_constr

A list of the inequality constraints in the canonical problem.

dims

A list with the dimensions of the conic constraints.

solver

A string representing the solver to be called.

Methods (by generic)

  • format_constr(SOCAxis): Format SOC constraints as inequalities for the solver.

  • num_cones(SOCAxis): The number of elementwise cones.

  • cone_sizes(SOCAxis): The dimensions of a single cone.

  • size(SOCAxis): The dimensions of the (elementwise) second-order cones.

Slots

t

The scalar part of the second-order constraint.

x_elems

A list containing X, a matrix whose rows/columns are each a cone.

axis

The dimension across which to take the slice: 1 indicates rows, and 2 indicates columns.


The Solution class.

Description

This class represents a solution to an optimization problem.

Usage

## S4 method for signature 'Solution'
as.character(x)

Arguments

x

A Solution object.


The SolverStats class.

Description

This class contains the miscellaneous information that is returned by a solver after solving, but that is not captured directly by the Problem object.

Usage

SolverStats(results_dict = list(), solver_name = NA_character_)

Arguments

results_dict

A list containing the results returned by the solver.

solver_name

The name of the solver.

Value

A list containing

solver_name

The name of the solver.

solve_time

The time (in seconds) it took for the solver to solve the problem.

setup_time

The time (in seconds) it took for the solver to set up the problem.

num_iters

The number of iterations the solver had to go through to find a solution.

Slots

solver_name

The name of the solver.

solve_time

The time (in seconds) it took for the solver to solve the problem.

setup_time

The time (in seconds) it took for the solver to set up the problem.

num_iters

The number of iterations the solver had to go through to find a solution.


The SolvingChain class.

Description

This class represents a reduction chain that ends with a solver.

Usage

## S4 method for signature 'SolvingChain,Chain'
prepend(object, chain)

## S4 method for signature 'SolvingChain,Problem'
reduction_solve(
  object,
  problem,
  warm_start,
  verbose,
  feastol,
  reltol,
  abstol,
  num_iter,
  solver_opts
)

## S4 method for signature 'SolvingChain'
reduction_solve_via_data(
  object,
  problem,
  data,
  warm_start,
  verbose,
  feastol,
  reltol,
  abstol,
  num_iter,
  solver_opts
)

Arguments

object

A SolvingChain object.

chain

A Chain to prepend.

problem

The problem to solve.

warm_start

A boolean of whether to warm start the solver.

verbose

A boolean of whether to enable solver verbosity.

feastol

The feasible tolerance.

reltol

The relative tolerance.

abstol

The absolute tolerance.

num_iter

The maximum number of iterations.

solver_opts

A list of Solver specific options

data

Data for the solver.

Methods (by generic)

  • prepend(object = SolvingChain, chain = Chain): Create and return a new SolvingChain by concatenating chain with this instance.

  • reduction_solve(object = SolvingChain, problem = Problem): Applies each reduction in the chain to the problem, solves it, and then inverts the chain to return a solution of the supplied problem.

  • reduction_solve_via_data(SolvingChain): Solves the problem using the data output by the an apply invocation.


Square Root

Description

The elementwise square root.

Usage

## S4 method for signature 'Expression'
sqrt(x)

Arguments

x

An Expression.

Value

An Expression representing the square root of the input. A <- Variable(2,2) val <- cbind(c(2,4), c(16,1)) prob <- Problem(Maximize(sqrt(A)[1,2]), list(A == val)) result <- solve(prob) result$value


Square

Description

The elementwise square.

Usage

## S4 method for signature 'Expression'
square(x)

Arguments

x

An Expression.

Value

An Expression representing the square of the input. A <- Variable(2,2) val <- cbind(c(2,4), c(16,1)) prob <- Problem(Minimize(square(A)[1,2]), list(A == val)) result <- solve(prob) result$value


Sum of Entries

Description

The sum of entries in a vector or matrix.

Usage

sum_entries(expr, axis = NA_real_, keepdims = FALSE)

## S3 method for class 'Expression'
sum(..., na.rm = FALSE)

Arguments

expr

An Expression, vector, or matrix.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.

keepdims

(Optional) Should dimensions be maintained when applying the atom along an axis? If FALSE, result will be collapsed into an nx1n x 1 column vector. The default is FALSE.

...

Numeric scalar, vector, matrix, or Expression objects.

na.rm

(Unimplemented) A logical value indicating whether missing values should be removed.

Value

An Expression representing the sum of the entries of the input.

Examples

x <- Variable(2)
prob <- Problem(Minimize(sum_entries(x)), list(t(x) >= matrix(c(1,2), nrow = 1, ncol = 2)))
result <- solve(prob)
result$value
result$getValue(x)

C <- Variable(3,2)
prob <- Problem(Maximize(sum_entries(C)), list(C[2:3,] <= 2, C[1,] == 1))
result <- solve(prob)
result$value
result$getValue(C)
x <- Variable(2)
prob <- Problem(Minimize(sum_entries(x)), list(t(x) >= matrix(c(1,2), nrow = 1, ncol = 2)))
result <- solve(prob)
result$value
result$getValue(x)

C <- Variable(3,2)
prob <- Problem(Maximize(sum_entries(C)), list(C[2:3,] <= 2, C[1,] == 1))
result <- solve(prob)
result$value
result$getValue(C)

Sum of Largest Values

Description

The sum of the largest kk values of a vector or matrix.

Usage

sum_largest(x, k)

Arguments

x

An Expression, vector, or matrix.

k

The number of largest values to sum over.

Value

An Expression representing the sum of the largest k values of the input.

Examples

set.seed(122)
m <- 300
n <- 9
X <- matrix(stats::rnorm(m*n), nrow = m, ncol = n)
X <- cbind(rep(1,m), X)
b <- c(0, 0.8, 0, 1, 0.2, 0, 0.4, 1, 0, 0.7)
y <- X %*% b + stats::rnorm(m)

beta <- Variable(n+1)
obj <- sum_largest((y - X %*% beta)^2, 100)
prob <- Problem(Minimize(obj))
result <- solve(prob)
result$getValue(beta)

Sum of Smallest Values

Description

The sum of the smallest k values of a vector or matrix.

Usage

sum_smallest(x, k)

Arguments

x

An Expression, vector, or matrix.

k

The number of smallest values to sum over.

Value

An Expression representing the sum of the smallest k values of the input.

Examples

set.seed(1323)
m <- 300
n <- 9
X <- matrix(stats::rnorm(m*n), nrow = m, ncol = n)
X <- cbind(rep(1,m), X)
b <- c(0, 0.8, 0, 1, 0.2, 0, 0.4, 1, 0, 0.7)
factor <- 2*rbinom(m, size = 1, prob = 0.8) - 1
y <- factor * (X %*% b) + stats::rnorm(m)

beta <- Variable(n+1)
obj <- sum_smallest(y - X %*% beta, 200)
prob <- Problem(Maximize(obj), list(0 <= beta, beta <= 1))
result <- solve(prob)
result$getValue(beta)

Sum of Squares

Description

The sum of the squared entries in a vector or matrix.

Usage

sum_squares(expr)

Arguments

expr

An Expression, vector, or matrix.

Value

An Expression representing the sum of squares of the input.

Examples

set.seed(212)
m <- 30
n <- 20
A <- matrix(stats::rnorm(m*n), nrow = m, ncol = n)
b <- matrix(stats::rnorm(m), nrow = m, ncol = 1)

x <- Variable(n)
obj <- Minimize(sum_squares(A %*% x - b))
constr <- list(0 <= x, x <= 1)
prob <- Problem(obj, constr)
result <- solve(prob)

result$value
result$getValue(x)
result$getDualValue(constr[[1]])

The SumEntries class.

Description

This class represents the sum of all entries in a vector or matrix.

Usage

SumEntries(expr, axis = NA_real_, keepdims = FALSE)

## S4 method for signature 'SumEntries'
to_numeric(object, values)

## S4 method for signature 'SumEntries'
is_atom_log_log_convex(object)

## S4 method for signature 'SumEntries'
is_atom_log_log_concave(object)

## S4 method for signature 'SumEntries'
graph_implementation(object, arg_objs, dim, data = NA_real_)

Arguments

expr

An Expression representing a vector or matrix.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.

keepdims

(Optional) Should dimensions be maintained when applying the atom along an axis? If FALSE, result will be collapsed into an nx1n x 1 column vector. The default is FALSE.

object

A SumEntries object.

values

A list of arguments to the atom.

arg_objs

A list of linear expressions for each argument.

dim

A vector representing the dimensions of the resulting expression.

data

A list of additional data required by the atom.

Methods (by generic)

  • to_numeric(SumEntries): Sum the entries along the specified axis.

  • is_atom_log_log_convex(SumEntries): Is the atom log-log convex?

  • is_atom_log_log_concave(SumEntries): Is the atom log-log concave?

  • graph_implementation(SumEntries): The graph implementation of the atom.

Slots

expr

An Expression representing a vector or matrix.

axis

(Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.

keepdims

(Optional) Should dimensions be maintained when applying the atom along an axis? If FALSE, result will be collapsed into an nx1n x 1 column vector. The default is FALSE.


The SumLargest class.

Description

The sum of the largest k values of a matrix.

Usage

SumLargest(x, k)

## S4 method for signature 'SumLargest'
to_numeric(object, values)

## S4 method for signature 'SumLargest'
validate_args(object)

## S4 method for signature 'SumLargest'
dim_from_args(object)

## S4 method for signature 'SumLargest'
sign_from_args(object)

## S4 method for signature 'SumLargest'
is_atom_convex(object)

## S4 method for signature 'SumLargest'
is_atom_concave(object)

## S4 method for signature 'SumLargest'
is_incr(object, idx)

## S4 method for signature 'SumLargest'
is_decr(object, idx)

## S4 method for signature 'SumLargest'
get_data(object)

## S4 method for signature 'SumLargest'
.grad(object, values)

Arguments

x

An Expression or numeric matrix.

k

The number of largest values to sum over.

object

A SumLargest object.

values

A list of numeric values for the arguments

idx

An index into the atom.

Methods (by generic)

  • to_numeric(SumLargest): The sum of the k largest entries of the vector or matrix.

  • validate_args(SumLargest): Check that k is a positive integer.

  • dim_from_args(SumLargest): The atom is a scalar.

  • sign_from_args(SumLargest): The sign of the atom.

  • is_atom_convex(SumLargest): The atom is convex.

  • is_atom_concave(SumLargest): The atom is not concave.

  • is_incr(SumLargest): The atom is weakly increasing in every argument.

  • is_decr(SumLargest): The atom is not weakly decreasing in any argument.

  • get_data(SumLargest): A list containing k.

  • .grad(SumLargest): Gives the (sub/super)gradient of the atom w.r.t. each variable

Slots

x

An Expression or numeric matrix.

k

The number of largest values to sum over.


The SumSmallest atom.

Description

The sum of the smallest k values of a matrix.

Usage

SumSmallest(x, k)

Arguments

x

An Expression or numeric matrix.

k

The number of smallest values to sum over.

Value

Sum of the smlalest k values


The SumSquares atom.

Description

The sum of the squares of the entries.

Usage

SumSquares(expr)

Arguments

expr

An Expression or numeric matrix.

Value

Sum of the squares of the entries in the expression.


The SymbolicQuadForm class.

Description

The SymbolicQuadForm class.

Usage

SymbolicQuadForm(x, P, expr)

## S4 method for signature 'SymbolicQuadForm'
dim_from_args(object)

## S4 method for signature 'SymbolicQuadForm'
sign_from_args(object)

## S4 method for signature 'SymbolicQuadForm'
get_data(object)

## S4 method for signature 'SymbolicQuadForm'
is_atom_convex(object)

## S4 method for signature 'SymbolicQuadForm'
is_atom_concave(object)

## S4 method for signature 'SymbolicQuadForm'
is_incr(object, idx)

## S4 method for signature 'SymbolicQuadForm'
is_decr(object, idx)

## S4 method for signature 'SymbolicQuadForm'
is_quadratic(object)

## S4 method for signature 'SymbolicQuadForm'
.grad(object, values)

Arguments

x

An Expression or numeric vector.

P

An Expression, numeric matrix, or vector.

expr

The original Expression.

object

A SymbolicQuadForm object.

idx

An index into the atom.

values

A list of numeric values for the arguments

Methods (by generic)

  • dim_from_args(SymbolicQuadForm): The dimensions of the atom.

  • sign_from_args(SymbolicQuadForm): The sign (is positive, is negative) of the atom.

  • get_data(SymbolicQuadForm): The original expression.

  • is_atom_convex(SymbolicQuadForm): Is the original expression convex?

  • is_atom_concave(SymbolicQuadForm): Is the original expression concave?

  • is_incr(SymbolicQuadForm): Is the original expression weakly increasing in argument idx?

  • is_decr(SymbolicQuadForm): Is the original expression weakly decreasing in argument idx?

  • is_quadratic(SymbolicQuadForm): The atom is quadratic.

  • .grad(SymbolicQuadForm): Gives the (sub/super)gradient of the atom w.r.t. each variable

Slots

x

An Expression or numeric vector.

P

An Expression, numeric matrix, or vector.

original_expression

The original Expression.


Matrix Transpose

Description

The transpose of a matrix.

Usage

## S3 method for class 'Expression'
t(x)

## S4 method for signature 'Expression'
t(x)

Arguments

x

An Expression representing a matrix.

Value

An Expression representing the transposed matrix.

Examples

x <- Variable(3, 4)
t(x)

Numeric Value of Atom

Description

Returns the numeric value of the atom evaluated on the specified arguments.

Usage

to_numeric(object, values)

Arguments

object

An Atom object.

values

A list of arguments to the atom.

Value

A numeric scalar, vector, or matrix.


The TotalVariation atom.

Description

The total variation of a vector, matrix, or list of matrices. Uses L1 norm of discrete gradients for vectors and L2 norm of discrete gradients for matrices.

Usage

TotalVariation(value, ...)

Arguments

value

An Expression representing the value to take the total variation of.

...

Additional matrices extending the third dimension of value.

Value

An expression representing the total variation.


The Trace class.

Description

This class represents the sum of the diagonal entries in a matrix.

Usage

Trace(expr)

## S4 method for signature 'Trace'
to_numeric(object, values)

## S4 method for signature 'Trace'
validate_args(object)

## S4 method for signature 'Trace'
dim_from_args(object)

## S4 method for signature 'Trace'
is_atom_log_log_convex(object)

## S4 method for signature 'Trace'
is_atom_log_log_concave(object)

## S4 method for signature 'Trace'
graph_implementation(object, arg_objs, dim, data = NA_real_)

Arguments

expr

An Expression representing a matrix.

object

A Trace object.

values

A list of arguments to the atom.

arg_objs

A list of linear expressions for each argument.

dim

A vector representing the dimensions of the resulting expression.

data

A list of additional data required by the atom.

Methods (by generic)

  • to_numeric(Trace): Sum the diagonal entries.

  • validate_args(Trace): Check the argument is a square matrix.

  • dim_from_args(Trace): The atom is a scalar.

  • is_atom_log_log_convex(Trace): Is the atom log-log convex?

  • is_atom_log_log_concave(Trace): Is the atom log-log concave?

  • graph_implementation(Trace): The graph implementation of the atom.

Slots

expr

An Expression representing a matrix.


The Transpose class.

Description

This class represents the matrix transpose.

Usage

## S4 method for signature 'Transpose'
to_numeric(object, values)

## S4 method for signature 'Transpose'
is_symmetric(object)

## S4 method for signature 'Transpose'
is_hermitian(object)

## S4 method for signature 'Transpose'
dim_from_args(object)

## S4 method for signature 'Transpose'
is_atom_log_log_convex(object)

## S4 method for signature 'Transpose'
is_atom_log_log_concave(object)

## S4 method for signature 'Transpose'
get_data(object)

## S4 method for signature 'Transpose'
graph_implementation(object, arg_objs, dim, data = NA_real_)

Arguments

object

A Transpose object.

values

A list of arguments to the atom.

arg_objs

A list of linear expressions for each argument.

dim

A vector representing the dimensions of the resulting expression.

data

A list of additional data required by the atom.

Methods (by generic)

  • to_numeric(Transpose): The transpose of the given value.

  • is_symmetric(Transpose): Is the expression symmetric?

  • is_hermitian(Transpose): Is the expression hermitian?

  • dim_from_args(Transpose): The dimensions of the atom.

  • is_atom_log_log_convex(Transpose): Is the atom log-log convex?

  • is_atom_log_log_concave(Transpose): Is the atom log-log concave?

  • get_data(Transpose): Returns the axes for transposition.

  • graph_implementation(Transpose): The graph implementation of the atom.


Expands lower triangular to full matrix.

Description

Expands lower triangular to full matrix.

Usage

tri_to_full(lower_tri, n)

Arguments

lower_tri

A matrix representing the lower triangular part of the matrix, stacked in column-major order

n

The number of rows (columns) in the full square matrix.

Value

A matrix that is the scaled expansion of the lower triangular matrix.


Expands upper triangular to full matrix.

Description

Expands upper triangular to full matrix.

Usage

triu_to_full(upper_tri, n)

Arguments

upper_tri

A matrix representing the uppertriangular part of the matrix, stacked in column-major order

n

The number of rows (columns) in the full square matrix.

Value

A matrix that is the scaled expansion of the upper triangular matrix.


Total Variation

Description

The total variation of a vector, matrix, or list of matrices. Uses L1 norm of discrete gradients for vectors and L2 norm of discrete gradients for matrices.

Usage

tv(value, ...)

Arguments

value

An Expression, vector, or matrix.

...

(Optional) Expression objects or numeric constants that extend the third dimension of value.

Value

An Expression representing the total variation of the input.

Examples

rows <- 10
cols <- 10
Uorig <- matrix(sample(0:255, size = rows * cols, replace = TRUE), nrow = rows, ncol = cols)

# Known is 1 if the pixel is known, 0 if the pixel was corrupted
Known <- matrix(0, nrow = rows, ncol = cols)
for(i in 1:rows) {
   for(j in 1:cols) {
      if(stats::runif(1) > 0.7)
         Known[i,j] <- 1
   }
}
Ucorr <- Known %*% Uorig

# Recover the original image using total variation in-painting
U <- Variable(rows, cols)
obj <- Minimize(tv(U))
constraints <- list(Known * U == Known * Ucorr)
prob <- Problem(obj, constraints)
result <- solve(prob, solver = "SCS")
result$getValue(U)

The UnaryOperator class.

Description

This base class represents expressions involving unary operators.

Usage

## S4 method for signature 'UnaryOperator'
name(x)

## S4 method for signature 'UnaryOperator'
to_numeric(object, values)

Arguments

x, object

A UnaryOperator object.

values

A list of arguments to the atom.

Methods (by generic)

  • name(UnaryOperator): Returns the expression in string form.

  • to_numeric(UnaryOperator): Applies the unary operator to the value.

Slots

expr

The Expression that is being operated upon.

op_name

A character string indicating the unary operation.


Parse output from a solver and updates problem state

Description

Updates problem status, problem value, and primal and dual variable values

Usage

unpack_results(object, solution, chain, inverse_data)

Arguments

object

A Problem object.

solution

A Solution object.

chain

The corresponding solving Chain.

inverse_data

A InverseData object or list containing data necessary for the inversion.

Value

A list containing the solution to the problem:

status

The status of the solution. Can be "optimal", "optimal_inaccurate", "infeasible", "infeasible_inaccurate", "unbounded", "unbounded_inaccurate", or "solver_error".

value

The optimal value of the objective function.

solver

The name of the solver.

solve_time

The time (in seconds) it took for the solver to solve the problem.

setup_time

The time (in seconds) it took for the solver to set up the problem.

num_iters

The number of iterations the solver had to go through to find a solution.

getValue

A function that takes a Variable object and retrieves its primal value.

getDualValue

A function that takes a Constraint object and retrieves its dual value(s).

Examples

## Not run: 
x <- Variable(2)
obj <- Minimize(x[1] + cvxr_norm(x, 1))
constraints <- list(x >= 2)
prob1 <- Problem(obj, constraints)
# Solve with ECOS.
ecos_data <- get_problem_data(prob1, "ECOS")
# Call ECOS solver interface directly
ecos_output <- ECOSolveR::ECOS_csolve(
                           c = ecos_data[["c"]],
                           G = ecos_data[["G"]],
                           h = ecos_data[["h"]],
                           dims = ecos_data[["dims"]],
                           A = ecos_data[["A"]],
                           b = ecos_data[["b"]]
                         )
# Unpack raw solver output.
res1 <- unpack_results(prob1, "ECOS", ecos_output)
# Without DCP validation (so be sure of your math), above is equivalent to:
# res1 <- solve(prob1, solver = "ECOS")
X <- Variable(2,2, PSD = TRUE)
Fmat <- rbind(c(1,0), c(0,-1))
obj <- Minimize(sum_squares(X - Fmat))
prob2 <- Problem(obj)
scs_data <- get_problem_data(prob2, "SCS")
scs_output <- scs::scs(
                      A = scs_data[['A']],
                      b = scs_data[['b']],
                      obj = scs_data[['c']],
                      cone = scs_data[['dims']]
                  )
res2 <- unpack_results(prob2, "SCS", scs_output)
# Without DCP validation (so be sure of your math), above is equivalent to:
# res2 <- solve(prob2, solver = "SCS")

## End(Not run)

Utility methods for special handling of semidefinite constraints.

Description

Utility methods for special handling of semidefinite constraints.

Usage

updated_scaled_lower_tri(matrix)

Arguments

matrix

The matrix to get the lower triangular matrix for

Value

The lower triangular part of the matrix, stacked in column-major order


Upper Triangle of a Matrix

Description

The vectorized strictly upper triangular entries of a matrix.

Usage

upper_tri(expr)

Arguments

expr

An Expression or matrix.

Value

An Expression representing the upper triangle of the input.

Examples

C <- Variable(3,3)
val <- cbind(3:5, 6:8, 9:11)
prob <- Problem(Maximize(upper_tri(C)[3,1]), list(C == val))
result <- solve(prob)
result$value
result$getValue(upper_tri(C))

The UpperTri class.

Description

The vectorized strictly upper triagonal entries of a matrix.

Usage

UpperTri(expr)

## S4 method for signature 'UpperTri'
to_numeric(object, values)

## S4 method for signature 'UpperTri'
validate_args(object)

## S4 method for signature 'UpperTri'
dim_from_args(object)

## S4 method for signature 'UpperTri'
is_atom_log_log_convex(object)

## S4 method for signature 'UpperTri'
is_atom_log_log_concave(object)

## S4 method for signature 'UpperTri'
graph_implementation(object, arg_objs, dim, data = NA_real_)

Arguments

expr

An Expression or numeric matrix.

object

An UpperTri object.

values

A list of arguments to the atom.

arg_objs

A list of linear expressions for each argument.

dim

A vector representing the dimensions of the resulting expression.

data

A list of additional data required by the atom.

Methods (by generic)

  • to_numeric(UpperTri): Vectorize the upper triagonal entries.

  • validate_args(UpperTri): Check the argument is a square matrix.

  • dim_from_args(UpperTri): The dimensions of the atom.

  • is_atom_log_log_convex(UpperTri): Is the atom log-log convex?

  • is_atom_log_log_concave(UpperTri): Is the atom log-log concave?

  • graph_implementation(UpperTri): The graph implementation of the atom.

Slots

expr

An Expression or numeric matrix.


Validate Arguments

Description

Validate an atom's arguments, returning an error if any are invalid.

Usage

validate_args(object)

Arguments

object

An Atom object.


Validate Value

Description

Check that the value satisfies a Leaf's symbolic attributes.

Usage

validate_val(object, val)

Arguments

object

A Leaf object.

val

The assigned value.

Value

The value converted to proper matrix type.


Get or Set Value

Description

Get or set the value of a variable, parameter, expression, or problem.

Usage

value(object)

value(object) <- value

Arguments

object

A Variable, Parameter, Expression, or Problem object.

value

A numeric scalar, vector, or matrix to assign to the object.

Value

The numeric value of the variable, parameter, or expression. If any part of the mathematical object is unknown, return NA.

Examples

lambda <- Parameter()
value(lambda)

value(lambda) <- 5
value(lambda)

The Variable class.

Description

This class represents an optimization variable.

Usage

Variable(rows = NULL, cols = NULL, name = NA_character_, ...)

## S4 method for signature 'Variable'
as.character(x)

## S4 method for signature 'Variable'
name(x)

## S4 method for signature 'Variable'
value(object)

## S4 method for signature 'Variable'
grad(object)

## S4 method for signature 'Variable'
variables(object)

## S4 method for signature 'Variable'
canonicalize(object)

Arguments

rows

The number of rows in the variable.

cols

The number of columns in the variable.

name

(Optional) A character string representing the name of the variable.

...

(Optional) Additional attribute arguments. See Leaf for details.

x, object

A Variable object.

Methods (by generic)

  • name(Variable): The name of the variable.

  • value(Variable): Get the value of the variable.

  • grad(Variable): The sub/super-gradient of the variable represented as a sparse matrix.

  • variables(Variable): Returns itself as a variable.

  • canonicalize(Variable): The canonical form of the variable.

Slots

dim

The dimensions of the variable.

name

(Optional) A character string representing the name of the variable.

Examples

x <- Variable(3, name = "x0") ## 3-int variable
y <- Variable(3, 3, name = "y0") # Matrix variable
as.character(y)
id(y)
is_nonneg(x)
is_nonpos(x)
size(y)
name(y)
value(y) <- matrix(1:9, nrow = 3)
value(y)
grad(y)
variables(y)
canonicalize(y)

Vectorization of a Matrix

Description

Flattens a matrix into a vector in column-major order.

Usage

vec(X)

Arguments

X

An Expression or matrix.

Value

An Expression representing the vectorized matrix.

Examples

A <- Variable(2,2)
c <- 1:4
expr <- vec(A)
obj <- Minimize(t(expr) %*% c)
constraints <- list(A == cbind(c(-1,-2), c(3,4)))
prob <- Problem(obj, constraints)
result <- solve(prob)
result$value
result$getValue(expr)

Turns symmetric 2D array into a lower triangular matrix

Description

Turns symmetric 2D array into a lower triangular matrix

Usage

vectorized_lower_tri_to_mat(v, dim)

Arguments

v

A list of length (dim * (dim + 1) / 2).

dim

The number of rows (equivalently, columns) in the output array.

Value

Return the symmetric 2D array defined by taking "v" to specify its lower triangular matrix.


Vertical Concatenation

Description

The vertical concatenation of expressions. This is equivalent to rbind when applied to objects with the same number of columns.

Usage

vstack(...)

Arguments

...

Expression objects, vectors, or matrices. All arguments must have the same number of columns.

Value

An Expression representing the concatenated inputs.

Examples

x <- Variable(2)
y <- Variable(3)
c <- matrix(1, nrow = 1, ncol = 5)
prob <- Problem(Minimize(c %*% vstack(x, y)), list(x == c(1,2), y == c(3,4,5)))
result <- solve(prob)
result$value

c <- matrix(1, nrow = 1, ncol = 4)
prob <- Problem(Minimize(c %*% vstack(x, x)), list(x == c(1,2)))
result <- solve(prob)
result$value

A <- Variable(2,2)
C <- Variable(3,2)
c <- matrix(1, nrow = 2, ncol = 2)
prob <- Problem(Minimize(sum(vstack(A, C))), list(A >= 2*c, C == -2))
result <- solve(prob)
result$value

B <- Variable(2,2)
c <- matrix(1, nrow = 1, ncol = 2)
prob <- Problem(Minimize(sum(vstack(c %*% A, c %*% B))), list(A >= 2, B == -2))
result <- solve(prob)
result$value

The VStack class.

Description

Vertical concatenation of values.

Usage

VStack(...)

## S4 method for signature 'VStack'
to_numeric(object, values)

## S4 method for signature 'VStack'
validate_args(object)

## S4 method for signature 'VStack'
dim_from_args(object)

## S4 method for signature 'VStack'
is_atom_log_log_convex(object)

## S4 method for signature 'VStack'
is_atom_log_log_concave(object)

## S4 method for signature 'VStack'
graph_implementation(object, arg_objs, dim, data = NA_real_)

Arguments

...

Expression objects or matrices. All arguments must have the same number of columns.

object

A VStack object.

values

A list of arguments to the atom.

arg_objs

A list of linear expressions for each argument.

dim

A vector representing the dimensions of the resulting expression.

data

A list of additional data required by the atom.

Methods (by generic)

  • to_numeric(VStack): Vertically concatenate the values using rbind.

  • validate_args(VStack): Check all arguments have the same width.

  • dim_from_args(VStack): The dimensions of the atom.

  • is_atom_log_log_convex(VStack): Is the atom log-log convex?

  • is_atom_log_log_concave(VStack): Is the atom log-log concave?

  • graph_implementation(VStack): The graph implementation of the atom.

Slots

...

Expression objects or matrices. All arguments must have the same number of columns.


The Wrap class.

Description

This virtual class represents a no-op wrapper to assert properties.

Usage

## S4 method for signature 'Wrap'
to_numeric(object, values)

## S4 method for signature 'Wrap'
dim_from_args(object)

## S4 method for signature 'Wrap'
is_atom_log_log_convex(object)

## S4 method for signature 'Wrap'
is_atom_log_log_concave(object)

## S4 method for signature 'Wrap'
graph_implementation(object, arg_objs, dim, data = NA_real_)

Arguments

object

A Wrap object.

values

A list of arguments to the atom.

arg_objs

A list of linear expressions for each argument.

dim

A vector representing the dimensions of the resulting expression.

data

A list of additional data required by the atom.

Methods (by generic)

  • to_numeric(Wrap): Returns the input value.

  • dim_from_args(Wrap): The dimensions of the atom.

  • is_atom_log_log_convex(Wrap): Is the atom log-log convex?

  • is_atom_log_log_concave(Wrap): Is the atom log-log concave?

  • graph_implementation(Wrap): The graph implementation of the atom.


The ZeroConstraint class

Description

The ZeroConstraint class

Usage

## S4 method for signature 'ZeroConstraint'
name(x)

## S4 method for signature 'ZeroConstraint'
dim(x)

## S4 method for signature 'ZeroConstraint'
is_dcp(object)

## S4 method for signature 'ZeroConstraint'
is_dgp(object)

## S4 method for signature 'ZeroConstraint'
residual(object)

## S4 method for signature 'ZeroConstraint'
canonicalize(object)

Arguments

x, object

A ZeroConstraint object.

Methods (by generic)

  • name(ZeroConstraint): The string representation of the constraint.

  • dim(ZeroConstraint): The dimensions of the constrained expression.

  • is_dcp(ZeroConstraint): Is the constraint DCP?

  • is_dgp(ZeroConstraint): Is the constraint DGP?

  • residual(ZeroConstraint): The residual of a constraint

  • canonicalize(ZeroConstraint): The graph implementation of the object.